

	Name:	()	Class:	Date:
--	-------	-----	--------	-------

3.1 Introduction to Approximation

Objectives: At the end of the lessons, students should be able to

- round off numbers to a required number of decimal places
- round off numbers to a required number of significant figures

Approximation is the **rounding** of numbers to a **required** degree of accuracy.

Prerequisite

Let's recap on the number placing positions. Fill in the blanks with a number from the following figure.

1894.237

(i) Thousands place: _____

(ii) Hundreds place: _____

(iii) Tens place:

(iv) Ones place:

(v) Thousandths place:

(vi) Hundredths place: _____

(vii) Tenths place:

Example 1 (Rounding off)

Based on the following number, correct to:

```
16.49583
```

(a) the nearest whole number. Ans: 16

(b) two decimal places. Ans: 16.50

(c) the nearest integer Ans: 16

When rounding off numbers:

(1) Round down if the digit under consideration is 4 or less.

Round up if the digit under consideration is 5 or more.

(2) Check the value of approximation against the original value

Practice 1

Round off the following correct to (i) two decimal places and (ii) the nearest whole number:

(a)	\$12.3125	(b)	57.6283
(c)	1.99976 cm	(d)	101.3333 kg
(e)	3.23495	(f)	\$ 4.5671

Example 2 (Significant figures)

Let us consider the following case.

A grain of table salt weighs 0.0001208g. If the answer is rounded off to 3 decimal places, the

weight of the salt is now:

0.0001208 g = 0.000 g (3 d.p.)

This value we obtain is not useful for calculations! Instead of rounding off to 3 decimal places, we

round off according to significant figures.

In a rounded off **decimal**, all digits, other than zeros preceding the **first non-zero digit**, are significant figures.

E.g. 0.0503 has 3 significant figures '503'

0.05030 has 4 significant figures '5030'

In a rounded off **whole number**, the ending **zeros may or may not be significant**. If it is the result of rounding off to the nearest 10, 100, 1000, ..., then the last 1 zero, 2 zeros, 3 zeros, ..., respectively, are not significant. All the other digits are significant figures.

E.g. 23000 (to the nearest 10) has 4 significant figures

23000 (to the nearest 100) has 3 significant figures

23000 (to the nearest 1000) has 2 significant figures

Practice 2

Based on the following number, correct to:

21.03460970

(a) 2 significant figures.

Ans: _____

(b) 3 significant figures.

Ans: _____

(c) 4 significant figures.

Ans: _____

(d) 5 significant figures.

Ans: _____

(e) 7 significant figures.

Ans: _____

Example 3

Express the following correct to 2 significant figures.

(a) 0.04862	(b) 2.99
Solution: 0.049 (2SF)	Solution: 3.0 (2SF)
(c) 0.90945	(d) 54.0243
Solution: 0.91 (2SF)	Solution: 54 (2SF)
(e) 1.589	(f) 20.03
Solution: 1.6 (2SF)	Solution: 20 (2SF)

Practice 3(a)

Write 1 354.154 correct to the number of significant figures indicated below.

(a)

- (b) (c) (d)
- 1 2 3 4 5
- (e)

Practice 3(b)

Round off	
(a)	29 470 to 3 significant figures
(b)	98 836 to 2 significant figures
(c)	851.02 to 4 significant figures
(d)	750.645 to 4 significant figures
(e)	0.079816 to 3 significant figures
(f)	0.000 557 to 2 significant figures
(g)	6407.37 to 5 significant figures
(h)	3.0072 to 4 significant figures

Practice 3(c)

Express each of the following correct to

(i) 2 decimal places, (ii) 2 significant figures.

(a)	3.825 1	(b)	0.013 527 6
(c)	0.207 9	(d)	5.068 4
(e)	12.384 7	(f)	197.143 92

Practice 3(d)

State the number of significant figures in each of the following.

- (a) 0.00063
- (b) 7006.12
- (c) 27.3752
- (d) 392.6445
- (e) 1.0780

Example 4

494.6

- (a) Calculate $\overline{56.33 \times 98.12}$ showing all the figures on your calculator display.
- (b) Give your answer correct to 1 decimal place.

Solution:

- (a) 0.08948635556
- (b) 0.1

Practice 4

384.8

- (a) Calculate $\overline{47.23 \times 91.43}$ showing all the figures on your calculator display.
- (b) Give your answer correct to 2 decimal place.

Example 5

The mass of a pebble is 25 grams correct to 2 significant figures. Find the minimum mass of the pebble.

Solution:

Thought process: To find the **minimum mass** of the pebble, we need to determine the range of values that round to **25 grams** when rounded to **2 significant figures**.

Possible values include 24.5, 24.6, 24.7, ..., 25.1, 25.2, 25.3, 25.4, and the smallest value is 24.5 grams.

Practice 5

The length of a string is 340 cm correct to 3 significant figures. Find the maximum length of the string.

Complete WS 1 by _____

3.2 Approximation & Approximation errors in Real-world contexts

Learning Experience 1

Paste your receipt collected below and answer the questions that follow.

- (a) Express the total amount of the items correct to 3 significant figures.
- (b) Express the cash given correct to
 - (i) 2 significant figures,
 - (ii) 3 significant figures,
 - (iii) 1 significant figure.

(c) Look at the below receipt issued by a restaurant in Singapore. Discuss with your partner and fill in the answers.

- (i) What was the amount charged on the customer?
- (ii) How was approximation used in this scenario?

.

(iii) If you were the owner and did not want to lose out the few cents due to rounding off, what other mode of approximation can you do to solve this problem?

3.3 Estimation

Objectives: At the end of the lessons, students should be able to

- estimate quantities to an appropriate degree of accuracy
- estimate the results of computations
- understand the effects of rounding errors in intermediate steps of calculations

Estimation enables us to make a **prediction** on our calculations.

Symbol for estimation is \approx .

Example 6

By rounding each number to 1 significant figure, estimate the value of

 $\frac{8.86 \times 97.8}{0.043 \times 301}.$

Show your working.

Solution:

 $\frac{8.86 \times 97.8}{0.043 \times 301} \approx \frac{9 \times 100}{0.04 \times 300} = 75$

Practice 6a

By rounding each number to 1 significant figure, estimate the value of

 $\frac{5.37 \times 89.8}{0.027 \times 503}.$

Show your working.

Practice 6b

For a wedding reception, with 334 guests, the caterers charge \$59.95 per person. By approximating both the charge and the number of guests to 2 significant figures, estimate the cost of the catering for the reception. Show your working and give your answer to a reasonable degree of accuracy.

Complete WS 2 by _____

HOMEWORK WORKSHEET 1

Ch 3.1 Rounding and Significant figures

Complete the following questions on foolscap.

Compulsory Questions

1. Textbook 1A (pg 79): Exercise 3A Qn 4

2. Textbook 1A (pg 79): Exercise 3A Qn 5

- 3. Textbook 1A (pg 79): Exercise 3A Qn 6
- 4. Textbook 1A (pg 79): Exercise 3A Qn 11

5. Express 204.016 to

(a) the nearest integer,

(b) 2 decimal places.

[1E | MYE | 2011 | Ang Mo Kio Sec Sch]

$\frac{494.6}{56.33 \times 98.12}$, showing all the figures on your calculator display.

6. (b) Give your answer correct to 1 decimal place.

['O' Level | Nov | 2009 |P1 Qn 19a]

HOMEWORK WORKSHEET 2

Ch 3.2 Approximation & Approximation errors in Real-world contexts

Complete the following questions on foolscap.

Compulsory Questions

Question 1

The population of France in 2006 was 63 587 70. Give this answer correct to:

- (a) 3 significant figures.
- (b) 2 significant figures.

[New Maths Counts (2nd Edition)]

Question 2

Express the following numbers correct to the degree of accuracy indicated within the brackets.

- (a) 18.749 (2 decimal places)
- (b) 59 510 (2 significant figures)
- (c) 0.030067 (3 significant figures)

[1E | MYE | 2011 | ACS (Barker)]

Question 3

By rounding each number to 2 significant figures estimate the value	$\sqrt{36.398 \times 24.9068}$		
By founding each number to 2 significant figures, estimate the value	49.5346		
of Show your workings.			

[1E | MYE | 2011 | Bowen Sec Sch]
