

GREENDALE SECONDARY SCHOOL

Preliminary Examination 2024

SERVE-LEAD-EXCEL				
STUDENT NAME				
		TEACHING		REG.
CLASS	4	GROUP		NO
CHEMISTR Paper 1 Multipl				6092/01 1 hour
Additional Mate	erials: Multiple	Choice Answer S	Sheet	

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class, teaching group and register number in the spaces provided above and on the Multiple Choice Answer Sheet provided.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 20.

The use of an approved scientific calculator is expected, where appropriate

1 A student is provided with two drying agents: concentrated sulfuric acid and calcium oxide.

Which method should he use to collect a sample of dry ammonia? $[M_r: NH_3, 17]$

- Which ion contains the same number of electrons as ${}_{26}^{56}\text{Fe}^{3+}$?
 - **A** ⁵⁹₂₇Co³⁺
- **B** $^{52}_{24}\text{Cr}^{2+}$
- C $^{56}_{25}Mn^{2+}$
- **D** $^{55}_{25}Mn^{3+}$

3 The chromatogram of substance S is shown.

Some distances, W, X, Y and Z, are labelled on the diagram.

How is the R_f value of substance S calculated?

- $\mathbf{A} \quad \frac{X}{Y}$
- $\mathbf{B} \quad \frac{\mathsf{W}}{\mathsf{Z}}$
- $\mathbf{c} = \frac{\mathsf{Y}}{\mathsf{X}}$
- $\mathbf{D} = \frac{\mathsf{Y}}{\mathsf{W}}$

Small crystals of purple KMnO₄ (M_r = 158) and orange K₂Cr₂O₇ (M_r = 294) were placed at the centres of separate petri dishes filled with agar jelly. They were left to stand under the same physical conditions.

After some time, the colour of each substance had spread out as shown.

The lengths of the arrows indicate the relative distances travelled by particles of each substance.

Which statement is correct?

- A Diffusion is faster in dish 1 because the mass of the particles is greater.
- **B** Diffusion is faster in dish 2 because the mass of the particles is greater.
- **C** Diffusion is slower in dish 1 because the mass of the particles is smaller.
- **D** Diffusion is slower in dish 2 because the mass of the particles is greater.

5 A compound, XY₄, is shown below.

Both atoms of elements X and Y combine to obtain the electronic configuration of neon.

Which row shows the correct group of elements X and Y and the number of non-bonding electrons in one molecule of XY₄?

	group of X	group of Y	number of non-bonding electrons
Α	14	17	24
В	14	17	34
С	17	14	24
D	17	14	34

6 How many sodium ions are there in 30 g of sodium sulfate, Na₂SO₄?

A
$$1.52 \times 10^{23}$$

B
$$2.54 \times 10^{23}$$

C
$$1.20 \times 10^{24}$$

D
$$6.02 \times 10^{24}$$

7 20 cm³ of propene was reacted with 150 cm³ of oxygen.

The equation for the reaction is shown.

$$2C_3H_6(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$$

What is the **total** volume of gas, measured at room temperature and pressure, that **remained** at the end of the reaction?

 \mathbf{A} 60 cm³

B 90 cm³

C 120 cm³

D 180 cm³

8	Bro	mobu	tane, C₄H ₉ l	Br, c	an be made from	but	anol, C₄H ₉ OH, us	sing	the reaction shown.
					C ₄ H ₉ OH + HBr –	→ C ₄	H ₉ Br + H ₂ O		
	In a	an exp	eriment, 10) g o	f C₄H ₉ OH produc	ed 1	12 g of C₄H ₉ Br.		
What is the percentage yield of C₄H ₉ Br?									
	[<i>M</i> _r : C ₄ H ₉ OH, 74; C ₄ H ₉ Br, 137]								
	_	45%		В	54%	С	65%	D	83%
9	Ca	leium (carbonato r	ooct	e with dilute bydr	ochl	oric acid accordin	oa to	the equation shown
3	Са	icium	cai boriate i		$_{\rm ICO_3}$ + 2HC $_{\it l}$ $ ightarrow$ C			ig to	the equation shown
	10	g of c	alcium carb	ona	te is reacted with	100	cm ³ of 1.0 mol /	dm ³	hydrochloric acid.
	The	e follo	wing staten	nent	s are made.				
		1 2 3	5.55 g of c	calciu	rbon dioxide is fount rbon dioxide is for rbon dioxide is form	med			
		3 4	•				he reaction is cor	nple	eted.
	Wh				the reaction are				
	A	1 and		В	1 and 4	C		D	3 and 4
	^	ran	u 2	_	i and 4	J	Z and J		5 and 4
10	The	e follo	wing staten	nent	s describe acids,	alka	alis and water.		
		1	Hydrochlo	ric a	cid is acidic beca	use	it contains H⁺ ior	ns ai	nd no OH⁻ ions.
		2	Nitric acid	is a	cidic because it c	onta	ains more H⁺ ions	tha	n OH⁻ ions.
		3	Sodium hy	/drox	kide is alkaline be	ecau	se it contains OF	l− ioi	ns and no H⁺ ions.
		4	Water is	neut	tral because the	e co	ncentration of H	H ⁺ ic	ons is equal to the
					of OH⁻ ions.				
	Wh	ich st	atements a	re co	orrect?				
	A	1 and	d 2	В	1 and 3	С	2 and 3	D	2 and 4

11 Beryllium hydroxide is an amphoteric white solid.

Which reagent can be used to distinguish beryllium hydroxide from solid calcium hydroxide?

- 1 HC*l*(aq)
- 2 HNO₃(aq)
- 3 KOH(aq)
- 4 NaOH(aq)
- **A** 1 or 2
- **B** 1 or 3
- **C** 2 or 4
- **D** 3 or 4
- 12 Which method should be used to make a pure sample of potassium chloride?
 - A adding AgCl(s) to KNO₃(aq)
 - **B** adding excess K₂CO₃(s) to HC*l*(aq)
 - **C** mixing KNO₃(aq) with NaC*l*(aq)
 - **D** titrating KOH(aq) with HC*l*(aq)
- 13 50.0 cm³ of hydrochloric acid has a pH of 1.0.

This acid requires 25.0 cm³ of aqueous sodium hydroxide to be neutralised.

A second 50.0 cm³ solution contains the weak acid, ethanoic acid.

The hydrochloric acid and ethanoic acid have the same concentration.

How will the pH of ethanoic acid and the volume of NaOH needed for neutralisation differ, if at all, from the hydrochloric acid?

	рН	volume of NaOH needed for neutralisation
Α	higher than HC <i>l</i>	lower than for HC <i>l</i>
В	higher than HC <i>l</i>	equal to HC <i>l</i>
С	lower than HCl	lower than for HCl
D	lower than HCl	equal to HC <i>l</i>

14 Ammonia is produced by the reaction of the elements hydrogen and nitrogen in the Haber process.

One of these elements is obtained from crude oil.

The ammonia formed can be reacted with substance Q to form a salt. Ammonia can be displaced from this salt by reacting with substance R.

Which row correctly shows the element obtained from crude oil and the types of substances corresponding to Q and R?

	element obtained from crude oil	substance Q	substance R
Α	hydrogen	acid	base
В	hydrogen	base	acid
С	nitrogen	acid	base
D	nitrogen	base	acid

15 A mixture W, containing two compounds, is tested with different reagents.

The results are shown.

reagent	observation
excess aqueous ammonia followed by filtration	green precipitate and colourless solution
dilute nitric acid and aqueous silver nitrate	no visible reaction
dilute nitric acid and aqueous barium nitrate	white precipitate
warm with aqueous sodium hydroxide and aluminium foil	moist red litmus paper remains red

What are the two salts in solution W?

- A ammonium chloride and calcium sulfate
- **B** calcium nitrate and iron(II) chloride
- **C** iron(II) sulfate and zinc nitrate
- **D** iron(II) sulfate and zinc sulfate

16 The following substances are used in the laboratory to test for various gases.

acidified potassium manganate(VII)	aqueous sodium hydroxide	blue litmus paper
limewater	red litmus paper	wooden splint

When testing for ammonia, chlorine, hydrogen and oxygen, what is the minimum number of items from the table above needed to identify these four gases?

2 Α

В 3 4

5 D

Which pairs of statements correctly describe the differences between the conduction of 17 electricity during electrolysis and the conduction of electricity by metals?

	conduction during electrolysis	conduction by metals
1	The current is due to the movement of both positive and negative ions.	The current is due to the movement of electrons.
2	Charged particles move towards both electrodes.	Charged particles move in one direction only.
3	It results in a chemical change.	It does not result in a chemical change.

A 1, 2 and 3

В

1 and 2 only **C** 2 and 3 only

1 only

18 Chemical Z is a powerful oxidising agent.

Which statement about Z is correct?

- A Z reacts with aqueous potassium iodide producing a brown solution and gains electrons in the process.
- Z reacts with aqueous potassium iodide producing a brown solution and loses electrons in the process.
- C Z decolourises acidified potassium manganate(VII) and gains electrons in the process.
- Z decolourises acidified potassium manganate(VII) and loses electrons in the process.

19 Impure copper can be purified via electrolysis, using copper electrodes and dilute aqueous copper(II) sulfate as the electrolyte.

The current is constant and the positive and negative electrodes are weighed at regular time intervals.

The following graphs were obtained when the mass of the positive and negative electrodes are plotted against time.

Which row correctly describes the electrolytic cell and the respective graphs obtained?

	negative electrode	positive electrode	graph for negative electrode	graph for positive electrode
Α	impure copper	pure copper	1	2
В	impure copper	pure copper	2	1
С	pure copper	impure copper	1	2
D	pure copper	impure copper	2	1

- **20** Three statements about fuel cells are given.
 - 1 A hydrogen-oxygen fuel cell requires a continuous input of fuel and oxygen.
 - In a hydrogen-oxygen fuel cell, hydrogen is burned in oxygen to produce electricity.
 - When a hydrogen-oxygen fuel cell is operating, water is the only chemical product.

Which statements are correct?

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

21 The apparatus used for the extraction of aluminium by electrolysis of molten aluminium oxide is shown.

Which row correctly describes the electrolysis of molten aluminium oxide?

	negative electrode	positive electrode	
Α	aluminium ions oxidised to aluminium	oxide ions reduced to oxygen	
В	aluminium ions reduced to aluminium	oxide ions oxidised to oxygen	
С	oxide ions oxidised to oxygen	aluminium ions reduced to aluminium	
D	oxide ions reduced to oxygen	aluminium ions oxidised to aluminium	

22 Two metal electrodes and an electrolyte can be used to produce electrical energy.

The table shows the voltage produced by some cells when different metals are used.

metal 1	metal 2	voltage / V
silver	zinc	1.56
silver	nickel	1.06
silver	iron	1.25
silver	magnesium	K
copper	iron	L

Which row best describes the voltage values K and L, and the relative reactivity of nickel?

	voltage K	voltage L	relative reactivity of nickel
Α	greater than 1.56 V	greater than 1.25 V	more reactive than iron but less reactive than zinc
В	less than 1.56 V	less than 1.25 V	more reactive than both iron and zinc
С	greater than 1.56 V	less than 1.25 V	less reactive than both iron and zinc
D	less than 1.56 V	greater than 1.25 V	less reactive than both iron and zinc

23 X is a Group 1 metal, more reactive than sodium.

Y and Z are Group 17 elements.

When X reacts with Y, a salt is formed. A solution of this salt reacts with Z to form a different salt.

What are X, Y and Z?

	Х	Y	Z
Α	K	Cl_2	I_2
В	Li	Cl_2	Br ₂
С	Li	Br ₂	Cl_2
D	K	I_2	Cl_2

- 24 Some properties of metals are listed.
 - 1 forms chloride of formula XCl only, where X is the metal
 - 2 forms coloured compounds
 - 3 high density
 - 4 its presence can lower the activation energy of a reaction
 - 5 low melting point

Which row shows the properties of group 1 metals and transition metals?

	properties of group 1 metals	properties of transition metals
Α	1 and 5	2, 3 and 4
В	1, 4 and 5	2 only
С	2, 3 and 4	1 and 5
D	2 and 3	1 and 4 only

25 An equal number of moles of metal carbonates XCO₃ and ZCO₃ are heated strongly.

They both decompose and release a gas.

The time taken for the compound to decompose completely is measured.

metal carbonate	time taken to decompose / s
XCO ₃	92
ZCO ₃	266

Which row describes the reactivity of the metals and the suggested method of extraction of each metal from its compound?

	reactivity of metals X and Z	method of extraction of X	method of extraction of Z
Α	X is more reactive than Z	electrolysis	reduction with carbon
В	X is more reactive than Z	reduction with carbon	electrolysis
С	Z is more reactive than X	electrolysis	reduction with carbon
D	Z is more reactive than X	reduction with carbon	electrolysis

26 Two large pieces of iron are placed in water.

In experiment 1, a small piece of copper is attached to the iron.

In experiment 2, a small piece of magnesium is attached to the iron.

Which are the equations for reactions that would take place in experiment 1 and experiment 2?

	experiment 1	experiment 2
Α	$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
В	$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$	$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$
С	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
D	$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$	$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$

27 Under certain conditions, nitrogen reacts with oxygen to form N₂O.

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$

The reaction pathway diagram is shown.

Which of the following correctly represents the enthalpy change and activation energy for the forward and backward reactions?

	forward	reaction	backward	d reaction
	enthalpy change	activation energy	enthalpy change	activation energy
Α	x - y	х	y – x	у
В	у	x	–у	x – y
С	x - y	у	y – x	у
D	у	x – y	–у	x – y

28 25 cm³ of 1.0 mol / dm³ hydrochloric acid reacts with 10 g of a solid to produce a gas.

The solid is in excess. The graph labelled first experiment shows the volume of gas produced over time.

Graphs P and Q show the volume of gas produced under different conditions.

Which changes in conditions produce graphs P and Q, if all other conditions are kept the same?

- A P uses 25 cm³ of more concentrated of acid and Q has a lower temperature.
- **B** P uses higher temperature and Q uses 25 cm³ of more dilute acid.
- **C** P uses higher temperature and Q uses smaller pieces of solid.
- **D** P uses smaller pieces of solid and Q uses larger pieces of solid.

29 X reacts with steam to form Y.

Y is oxidised to form Z.

What are the formulae of X and Y?

	formula of X	formula of Y
Α	C₃H ₆	C ₃ H ₇ O
В	C_3H_6	C₃H ₈ O
С	C₃H ₈	C_3H_7O
D	C₃H ₈	C₃H ₈ O

30 Petroleum (crude oil) is separated into useful fractions by fractional distillation.

The positions at which fractions X and Y are collected from the fractionating column are shown.

fractions

Which statements are **not** correct?

- 1 The temperature increases up the column.
- 2 X condenses at a lower temperature than Y.
- 3 X has longer chain molecules than Y.
- 4 X is more flammable than Y.

A 1 and 3

B 1 only

C 2 and 4

D 3 only

31 The reactants and products of two reactions are shown.

reaction 1
$$C_2H_6 + Cl_2 \rightarrow X + HCl$$

reaction 2
$$C_{17}H_{36} \rightarrow 2C_2H_4 + C_3H_6 + 2Y + H_2$$

Which row correctly describes these two reactions?

	formula of X	conditions for reaction 1	reaction 2	Y
Α	C ₂ H ₅ C <i>l</i>	in the dark	cracking	saturated
В	$C_2H_4Cl_2$	in the dark	substitution	unsaturated
С	$C_2H_4Cl_2$	in ultraviolet light	cracking	saturated
D	C₂H₅C <i>l</i>	in ultraviolet light	cracking	unsaturated

32 The structure of hydracrylic acid is shown.

A student added the following reagents to hydracrylic acid.

- 1 acidified potassium manganate(VII)
- 2 aqueous sodium carbonate
- 3 Universal Indicator

Which row correctly identifies the results obtained that correspond to the experiments?

	acidified potassium manganate(VII)	aqueous sodium carbonate	Universal Indicator
Α	colourless to purple	effervescence occurred	green to yellow
В	purple to colourless	effervescence occurred	green to orange
С	purple to colourless	effervescence occurred	green to blue
D	purple to colourless	no effervescence	green remains

33 A vegetable oil is polyunsaturated.

Which statement about this vegetable oil is **not** correct?

- **A** It has many carbon carbon double bonds.
- **B** It reacts with hydrogen to form a solid compound.
- **C** It will turn colourless aqueous bromine brown.
- **D** Nickel catalyst is added when forming margarine from vegetable oil.

34 There are two isomers of butene, C₄H₈. Their structures are given below.

The following statements are made about the isomers.

- 1 Combustion of 1 mole of each produces equal numbers of moles of both carbon dioxide and water.
- 2 Both produce the same molecule when reacted with hydrogen.
- 3 When polymerised, the same polymer is produced.
- 4 The following are the possible products from the reaction between bromine and each isomer.

Which statements are correct?

- 1, 2 and 4
- 1 and 2 only В
- C 2 and 3 only
- 2, 3 and 4

35 The partial structure of a polyamide is shown.

Which monomers would produce this polymer?

3

- 1 only
- В 1 and 2
- 1 and 3
- D 2 and 3

36 A pure fat has a molecular mass of 400.

100 g of the fat reacts with 127 g of iodine, I_2 .

How many moles of carbon - carbon double bonds are there in each molecule of the fat?

- Α 1 mol
- В 1.5 mol
- 2 mol
- 4 mol

37 Carbon dioxide and methane are both greenhouse gases.

Which activity produces both of these gases?

- A farming animals
- **B** cracking alkanes
- **C** the thermal decomposition of calcium carbonate
- **D** using petrol-powered cars
- 38 A sample of clean, dry air is passed repeatedly over hot copper until all the oxygen reacts with the copper as shown.

The volume of air decreases by 25 cm³.

What is the starting volume of the sample of air?

- **A** 50 cm³
- **B** 75 cm³
- $C 100 \text{ cm}^3$
- **D** 120 cm³
- **39** Which gas will react with ozone in the upper atmosphere of the Earth?
 - **A** CF_2CI_2
- B CH₄
- \mathbf{C} CO_2
- D CF₄
- **40** The carbon cycle includes the processes combustion, photosynthesis and respiration.

Which row shows how each process changes the amount of carbon dioxide in the atmosphere?

	combustion	photosynthesis	respiration
Α	decreases	decreases	increases
В	decreases	increases	decreases
С	increases	decreases	increases
D	increases	increases	decreases

END OF PAPER

The Periodic Table of Elements

	18	2 :	He	4	10	Ne	neon 20	18	A	argon 40	36	Ž	rypton o4	84	54	×e	xenon 131	98	R	radon	1	118	Og	anesson	ī
	17					_		-		chlorine 35.5			25.25	\dashv	-					104.0			Ts	tennessine og	1
	16				9	_	-	┝		sulfur 32	\vdash			\dashv				\vdash				116	<u>۲</u>	livermorium te	1
	15					_				phosphorus 31	,			\dashv	ý		1000	9		0.70	- 6	115	Mc	_	1
	14						carbon 12	_		silicon 28			82	\dashv	_			-				\vdash	F1		_
	13				2	В	boron 11	13	AI	aluminium 27	31	Ga	gallium	0	49	I	indium 115	81	11	thallium	204	113	R	nihonium	ī
										12	30	Zu	zinc	69	48	8	cadmium 112	80	Hg	mercury	201	112	5	copernicium	1
										1	53	C	copper	64	47	Ag	silver 108	62	Au	plog	197	111	Rg	roentgenium	1
Group	100									10	28	Z	nickel	66	46	Pd	palladium 106	78	₫	platinum			Ds		ı
Group										6	27	3	cobalt	66	45	몺	rhodium 103	77	I	inidium	192	109	M	meitnerium	ī
		-:	I	nydrogen 1						80	26	Fe	iron	90	44	Ru	101	9/	Os	osmium	190	108	H	hassium	1
										7	25	Mn	manganese	22	43	Tc	technetium -	75	Re	rhenium	186	107	Bh	pohrium	ī
					umber	loc	nass			9		ဝ	H			Mo	molybdenum 96	74		tungsten		3.50		E	1
				Key	proton (atomic) number	atomic symbol	name relative atomic mass			2	23	>	vanadium	21	41	QN.	niobium 93	73	Ta	tantalum	181	105	Op	dubnium	į.
					proton	ati	relati			4	22	F	titanium	48	40	Zr	zirconium 91	72	Ξ	hafnium	178	104	R	rutherfordium	1
								W.		8	21	Sc	scandium	45	39	>	yttrium 89	57-71	lanthanoids			89-103	actinoids		
	2				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium	40	38	S	strontium 88	56	Ba	parium	137	88	Ra	radium	ī
	1				3	<u>:</u>	lithium 7	11	Na	sodium 23	19	×	potassium	38	37	Rb	rubidium 85	55	S	caesium	133	87	Ŀ	francium	ı

22	28	29	09	61	62	63	64	65	99	29	89	69	20	71
La	Ce	Ā	PN	Pm	Sm	Eu	PS	Tp	Dy	유	ய்	Tm	Yb	Lu
lanthanum		praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	Intetium
139		141	144	1	150	152	157	159	163	165	167	169	173	175
88	06	91	92	93	94	98	96	26	86	66	100	101	102	103
Ac	T	Pa	ח	N _p	Pu	Am	Cm	æ	5	Es	Fm	Md	No	۲
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
1	232	231	238	1	1	1	1	1	1	1	1	1	_	1
	La lanthanum 139 89 Ac actinium	Ce cerium 140 90 Th thorium 233	Ce cerium 140 90 Th thorium 233	Ce Pr cerium praseodymium nec 140 91 Th Pa thorium protactinium u 232 231	58 59 Ce Pr cerium praseodymium 140 91 Th Pa thorium protactinium 232 231	Ce Pr Nd cerium praseodymium prodymium prodymi	Ce Pr Nd Pm cerium praseodymium neodymium promethium s 141 144 – 140 91 92 93 Th Pa U Np thorium protectinium	Ce Pr Nd Pm Sm Sm cerium prasecdymium neodymium promethium samarium 140 — 150	58 59 60 61 62 63 Ce Pr Nd Pm Sm Eu cerium prasecotymium neodymium promethium samarium europium gr 140 141 144 – 150 152 90 91 92 93 94 95 Th Pa U Np Pu Am thorium protactinium uranium neptunium americium 232 231 238 – – –	58 59 60 61 62 63 64 Ce Pr Nd Pm Sm Eu Gd cerium praseodymium reodymium promethium samarium europium gadolinium 140 141 144 – 150 152 157 90 91 92 93 94 95 96 Th Pa U Np Pu Am Cm thorium protectinium uranium reptunium pulutonium americium curium train 232 231 238 – – – – –	S8 59 60 61 62 63 64 65 Ce Pr Nd Pm Sm Eu Gd Tb 140 141 144 – 150 152 157 159 90 91 92 93 94 95 96 97 Th Pa U Np Pu Am Cm Bk thorium protectinium uranium neptunium pertectium perkeitium curium berkeitium 232 231 238 – – – – –	S8 59 60 61 62 63 64 65 66 66 Ce Pr Nd Pm Sm Eu Gd Tb Dy cerium praseodymium recordium promethium samarium europium gadolinium terbium dysprosium 140 141 144 – 150 152 157 159 163 90 91 92 93 94 95 96 97 98 Th Pa U Np Pu Am Cm BK Cf thorium protectinium uranium reputurium perterium perterium californium perterium 232 231 231 238 – – – – – –	S8 59 60 61 62 63 64 65 66 67 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho cerium praseodymium promethium promethium semantium europium gadolinium terbium dysprosium holmium 140 141 144 – 150 152 157 159 163 165 90 91 92 93 94 95 96 97 98 99 Th Pa U Np Pu Am Cm BK Cf Es thorium protectinium puttonium puttonium </td <td>S8 59 60 61 62 63 64 65 66 67 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 67 68 68 67 68 68 67 68 67 68 67 68 67 68 68 67 68 67 68 68 68 68 67 68 67 68 67 68 67 68 68 68 68 69 70 68 70 68 70<</td>	S8 59 60 61 62 63 64 65 66 67 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 68 67 68 67 68 68 67 68 68 67 68 67 68 67 68 67 68 68 67 68 67 68 68 68 68 67 68 67 68 67 68 67 68 68 68 68 69 70 68 70 68 70<

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$