

(TOPICAL REVISION) NUMERICAL METHODS (PART 1) APPROXIMATION OF ROOTS OF EQUATIONS

Note: Questions with * may require concepts and techniques you may not have learnt yet.

1 Show that the equation $x^3 - 5x + 1 = 0$, has exactly one root in (0,1). Use two iterations of linear interpolation between x = 0 and x = 1 to yield a fractional approximation of this root. [4]

Three possible rearrangements of the given equation in the form x = F(x) are

$$x = \sqrt[3]{5x-1},$$
 $x = \frac{1}{5}(x^3+1),$ $x = x^3 - 4x + 1.$

Only one of these rearrangements will provide an iterative method, of the form $x_{n+1} = F(x_n)$, $x_0 = 2$, which converges to the **root between 2 and 3**. Use this rearrangement to find this root correct to 3 significant figures. [4] It is known the correct rearrangement above provides a convergent iterative method by

analysing the derivative of F. For this purpose, show that 0 < F'(x) < 1, whenever $x \ge 2$. [2] [EJC/FM/2018/P1/9]

- 2 (a) The curve with equation $y = 2e^{x^2} + x 3$ has exactly one stationary point in the interval [-1, 0]. Use the Newton-Raphson method to find the *x*-coordinate of the stationary point, correct to 4 decimal places. [5]
 - (b) (i) Show that the equation $x^3 7x + 2 = 0$ has a root, α , in the interval [0, 1]. [1]
 - (ii) Student A uses the recurrence relation $x_{n+1} = \frac{1}{7} (14x_n x_n^3 2)$ for finding α . Explain why Student A will fail to find α . [2]

(iii) Student B uses the recurrence relation $x_{n+1} = \frac{1}{7} (x_n^3 + 2)$ for finding α . Find the approximate value of α to 5 decimal places. [2] [NJC/FM/2019/P1/8]

3 Let $f(x) = \sec^2 2x - e^x$. The equation f(x) = 0 has a root α in the interval [0.1, 0.3].

(a) Use Newton-Raphson method with initial approximation $x_0 = 0.1$ to find the first four approximations x_1 , x_2 , x_3 , x_4 to α . Deduce the behaviour of x_n for large *n* and use a graph of the function f to help you explain why the sequence is not converging to α .[5]

(b) Determine, with explanation, which one of these iterative formulae is more suitable in approximating the root α .

(I)
$$x_{n+1} = \ln\left(\sec^2\left(2x_n\right)\right)$$
 (II) $x_{n+1} = \frac{1}{2}\cos^{-1}\left(e^{-\frac{x_n}{2}}\right)$

Using an initial approximation of $x_0 = 0.3$ and the chosen iterative formula, find the approximation to the root α , correct to three decimal places. [4]

[RVHS/FM/2018/P1/Q10]

(i) The function f is such that f(a)f(b) < 0, where a < b. A student concludes that the equation f(x) = 0 has exactly one root in the interval (a, b). Illustrate with a sketch, two possible scenarios in which the student could be wrong. [2]

Given now that the equation
$$\sqrt{x-3} - \frac{2}{x^2} = 0$$
 has exactly one root α in the interval (3,4).

Derive the iterative formula $x_{n+1} = 3 + \frac{4}{r^4}$ using the fixed point iteration method. (ii)

Using 3 as the initial value, apply this iterative formula to find an approximation for α , correct to 3 decimal places. You are required to check the accuracy of your answer in this question. [3]

- (iii) By using linear interpolation once, obtain, correct to 3 decimal places, a first approximation α_1 to α . Using α_1 as the initial value, apply the Newton-Raphson method once to obtain α_2 , leaving your answer to 3 decimal places. [3]
- (iv) Explain why the Newton-Raphson method in this case fails to give an approximation to α . [1]
- **(v)** Illustrate, on a single diagram, how α_1 and α_2 are obtained. [2] [CJC/FM/2018/P1/Q5]

(i) By sketching the graphs of
$$y = \tan^{-1}\left(\frac{x}{5}\right)$$
 and $y = \sin^{-1}\left(\frac{x}{6}\right)$ on the same diagram,

show that the equation
$$\tan^{-1}\left(\frac{x}{5}\right) = \sin^{-1}\left(\frac{x}{6}\right)$$
 has a positive real root, α . [2]

(ii) Find the integer N such that
$$N < \alpha < N+1$$
.

(iii) Illustrate graphically, using $x_0 = N$, why the iterative procedure

$$x_{n+1} = 5 \tan\left(\sin^{-1}\left(\frac{x_n}{6}\right)\right)$$

will not give a good approximate value of α .

Taking the initial approximation to be N, use the Newton-Raphson method to find α to (iv) 2 decimal places. [3]

[RI/FM/2017/P2/Q1]

[2]

[2]

(i) Show, with the aid of a sketch graph, that the equation $x + k \ln x = 0$

> has exactly one real root, α , in the interval $\frac{1}{2} < x < 1$ if $k > \frac{1}{2 \ln 2}$. [3]

- In the case k = 1, a student tries to use fixed point iteration in the form of x = F(x) to (ii) find the value of α .
 - In his first attempt, the student uses $F(x) = -\ln x$ and $x_0 = 0.5$. Calculate the (a) value of x_1 and x_2 , correct to 4 decimal places. Explain why this method will fail to find the value of α . [2]

5

4

6

- (b) Suggest a possible F(x) for the student and using $x_0 = 0.5$, find the value of α , correct to 3 decimal places. [2]
- (c) Use a diagram to explain how the iteration in (b) converges to α , showing clearly the position of x_0 , x_1 and x_2 . [2]

[HCI/FM/2017/P2/Q2]

- (i) Show algebraically that the equation $x^3 x^2 6 = 0$ has exactly one real root in the interval (2, 3). [2]
 - (ii) Find an estimate of the root using 2 iterations of linear interpolation, correct to two decimal places. [2]
 - (iii) Determine algebraically if the estimate in (ii) is an underestimate or overestimate of the root. [3]

The equation $x^3 - x^2 - 6 = 0$, can be rearranged in the following ways (you are not required to verify):

(A)
$$x = (x^2 + 6)^{\frac{1}{3}}$$
 (B) $x = x^2 - \frac{6}{x}$ (C) $x = (x + \frac{6}{x})^{\frac{1}{2}}$

(iv) Determine with reasons which of the above expressions (A), (B) and (C) converges under the fixed-point iteration method using the initial value $x_0 = 2$. If it converges, use a graph to demonstrate 3 iterations of its convergence to the root, labelling the points x_0 , x_1 and x_2 clearly. [5]

[TJC/FM/2019/P1/7]

8 By considering the graphs of $y = \tan^2 x$ and $y = x^3$, show that the equation $\tan^2 x - x^3 = 0$ has exactly two roots in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$. Denoting the smaller root by α , where $1 < \alpha < 2$, use linear interpolation once on the interval [1, 2] to estimate the value of α , giving your answer correct to 3 decimal places. Comment on the suitability of the method used in this case. [3]

Taking $x_1 = 1.8$, where x_1 is the initial approximation of α , use the Newton-Raphson method to obtain a sequence of approximations for α , giving your answer correct to 3 decimal places. You should demonstrate that the root is found to the required degree of accuracy. [3] With the aid of a sketch, explain why any initial approximation x_1 such that $\frac{\pi}{2} < x_1 < \alpha$ will produce a sequence converging to α whereas some approximations x_1 such that $\alpha < x_1 < \frac{3\pi}{2}$ will not converge to α . [3] [HCI et al/FM/2018/P1/3]

9 The function f is such that $f(x) = 2\cos x - e^{-x}$.

(i) Matthias concludes that the equation f(x) = 0 has no roots in the interval [1,5]. Explain how Matthias may have arrived at this conclusion and draw a sketch to illustrate why he is wrong. [2]

7

The equation $2\cos x - e^{-x} = 0$ has a root α in the interval [1,2].

- (ii) Alice uses linear interpolation twice on the interval [1, 2] to find an approximation to α . Find the approximation to α given by this method, giving your answer to 2 decimal places. Without any further interpolation, demonstrate how Alice can verify its correctness to 2 decimal places. [4]
- (iii) Tabitha decides to use the Newton-Raphson method to find α with an initial approximation of $\alpha_1 = 1$, terminating the process when she has found two successive iterates that are equal when rounded to 5 decimal places. State the value of each of the iterates calculated correct to 5 decimal places. [3]

Buoyed by her success, Tabitha decided to try and find other roots of the equation by using other starting points. Knowing that there is another root β in the interval [3,7], she decided to apply the Newton-Raphson method to find β with an initial approximation of $\beta_1 = 3$. Describe what she will discover and with an aid of a sketch, explain her discovery briefly. [2]

(iv) Henry decided to use the following recurrence relation to find the roots of y = f(x): $x_{n+1} = -\ln(2\cos x_n)$ for $n \ge 1$.

Using $x_1 = 1.5$ as the starting point, calculate his obtained output for x_2 and explain why he will fail when attempting to calculate x_3 . [2]

Using $x_1 = 1$ as the starting point, state the output correct to 2 decimal places. With an aid of a sketch, explain briefly the recursive process that led to this output. [2] [ACJC/FM/2019/P1/9]

10* Show that the equation $2x^5 - \sqrt{3}x^4 + 32x - 16\sqrt{3} = 0$ has a root α between 0 and 1. [1] Use the Newton-Raphson method with $f(x) = 2x^5 - \sqrt{3}x^4 + 32x - 16\sqrt{3}$, to find α correct to 4 decimal places. [3]

Suggest an integer k such that α can be expressed in the form $\frac{\sqrt{k}}{2}$. Without the use of a calculator, find the other roots of the equation f(x) = 0. Leave your answers in the form $re^{i\theta}$, where $-\pi < \theta \le \pi$. [4]

On an Argand diagram, the point P_0 represents the root α and the points P_k (k = 1, 2, 3, 4), taken in the anti-clockwise direction starting from P_0 , represent the remaining roots. Find the exact area of the pentagon $P_0P_1P_2P_3P_4$. [3]

[VJC/FM/2018/P2/4]

Answers

1 $\frac{16}{79}$; 2.13 **2**(a) -0.2364 (b) (iii) $\alpha = 0.28917$ **3**(a) $x_1 \approx -0.146$, $x_2 \approx -0.0418$, $x_3 \approx -0.00480$, $x_4 \approx -0.00008$ (b) $\alpha \approx 0.240$ **4**(ii) $\alpha = 3.046$ (iii) 2.995 **5**(ii) 3 (iv) 3.32 **6**(ii) (a) $x_1 = 0.6931$, $x_2 = 0.3665$ (4 d.p.) (b) F(x) = e^{-x}; $\alpha = 0.567$ (3 d.p.) **7**(ii) 2.19 (iii) underestimate **8** 1.306; $\alpha = 1.928$ (to 3 d.p.) **9**(**ii**) 1.45 (**iii**) $\alpha_4 = 1.45367$, $\alpha_5 = 1.45367$ (iv) $x_2 = 1.95564$ (failed); -0.54 (2 d.p) **10** $\alpha = 0.8660$ (4 dp.); k (omitted), $x = 2e^{-i\frac{3\pi}{4}}$, $2e^{-i\frac{\pi}{4}}$, $2e^{i\frac{3\pi}{4}}$; $area = 6 + \frac{\sqrt{6}}{2}$ units²