2016 H1 A Level Mathematics Solution

Section A

(ii)
From GC, gradient of C when
$$x = 0.5$$
 is -1.61 (3 sig. fig.)
(iii) OUT of SYLLABUS
when $x = 0.5$, gradient of the normal to C at the point =
 $-\left(\frac{1}{-1.606531}\right) = 0.6224591994 = 0.622$ (3 sig.fig.)
At point (0.5, 0.3565307)
Equation of the normal C when $x = 0.5$
 $y - 0.35653 = 0.62246(x - 0.5)$
 $y = 0.622x + 0.0453$ (3 s.f)
(iv)
 $\int_{0}^{4} (e^{-x} - x^{2}) dx$
 $= \left[-e^{-x} - \frac{x^{3}}{3}\right]_{0}^{4}$
 $= \left(-e^{-x} - \frac{x^{3}}{3}\right]_{0}^{4} - \left(-e^{0} - \frac{0}{3}\right)$
 $= 1 - e^{-k} - \frac{k^{3}}{3}$
Q4. (i)
 $y = 1 + 6x - 3x^{2} - 4x^{3}$
 $\frac{dy}{dx} = 6 - 6x - 12x^{2}$
For stationary point,
 $\frac{dy}{dx} = 0$
 $6 - 6x - 12x^{2} = 0$
 $x = -1$ or $x = 0.5$
When $x = -1$, $y = -4$
When $x = 0.5$, $y = 2.75$
Coordinates of stationary points on the curve are (-1, -4) and (0.5, 2.75).
(ii)
 $\frac{d^{2}y}{dx^{2}} = -6 - 24x$
For $x = -1$

$$\sqrt{3}x^{2} - \frac{\sqrt{3}}{4}y^{2} = 2\sqrt{3}$$

$$x^{2} - \frac{1}{4}y^{2} = 2$$

$$4x^{2} - y^{2} = 8 \text{ (shown) [Equation 1]}$$
(ii)
Given that perimeter of the shape *ABEDFCA* = 10 cm

$$2(2x) + 2(y) + 2x - y = 10$$

$$4x + 2y + 2x - y = 10$$

$$6x + y = 10$$
Substitute $y = 10 - 6x$ into Equation 1

$$4x^{2} - (10 - 6x)^{2} = 8$$

$$4x^{2} - (100 - 120x + 36x^{2}) = 8$$

$$-32x^{2} + 120x - 108 = 0$$

$$32x^{2} - 120x + 108 = 0$$

$$x = 1.5 \text{ or } x = 2.25$$
For $x = 1.5$, $y = 1$
For $x = 2.25$, $y = -3.5$ (reject as length y cannot be less than 0)
The values of x and y are $x = 1.5$ and $y = 1$

Section B

Q6.	(i) OUT of SYLLABUS			
	Select the number of male and female students according to the table below.			
				_
		Gender	Sample size	
		Male	$\frac{1260}{\times 80-42}$	
			2400 ~ 00 = 42	
		Female	$\frac{1140}{\times 80-38}$	
			2400	
	Within each category of students, use simple random sampling.			
	For example in the category of male students, number the male students from 0001 to 1260 using 4-digit random numbers to generate a sample of 42 students.			s from 0001 to 1260,

(ii) <u>OUT of SYLLABUS</u>Stratified sampling method gives a sample that is more representative of the students expenditure on music annually compared to simple random sampling method.

(iii) Unbiased estimate for population mean,
$$\overline{x} = \frac{312}{80} = 3.9$$

Unbiased estimate for population variance, $s^2 = \frac{1}{79} \left[1328 - \frac{(312)^2}{80} \right]$
$$= 1\frac{161}{395} = 1.41 (3 \text{ s.f})$$

Q9.	Let X be the r.v. number of batteries that have a lifetime of less than two years out of 8			
	batteries. $X \sim B(8,0,6)$			
	$A \sim D(0,0.0)$			
	(ia) Required probability = $P(X = 8) = 0.01679616 = 0.0168$			
	(ib) Required probability = $P(Y = t) = P(Y = t)$			
	$P(X \ge 4) = 1 - P(X \le 4) = 1 - P(X \le 3) = 0.8263296 = 0.826$			
	Let Y be the r.v. number of packs of batteries that have at least half of the batteries have a lifetime of less than two years out of 4 packs of batteries. $Y \sim B(4, 0.8263296)$			
	(ii) Required probability = $P(Y \le 2) = 0.1417924285 = 0.142$			
	(iii) OUT OF SYLLABUS			
	Let T be the r.v. number of batteries that have a lifetime of less than two years out of 80 batteries.			
	$T \sim B(80, 0.6)$			
	Since $n = 80$ is large, $np = 80(0.6) = 48 > 5$, $nq = 80(0.4) = 32 > 5$,			
	$T \sim N(48, 19.2)$ approximately			
	E(T) = 48, $Var(T) = 19.2$			
	(iii) Required probability = $P(T \ge 40) \xrightarrow{cc} = P(T \ge 39.5) = 0.974$			
Q10	(i) Let X be the random variable denoting the mean top speed of cheetahs in km/h and μ be			
•	the population mean top speed of cheetahs. $H_0: \mu = 95$			
	$H_1: \mu \neq 95$			
	Under H ₀ , $\bar{X} \sim N(95, \frac{4.1^2}{40})$.			
	Using a two tailed z-test at 5% level, $\overline{x} = 96.3$ gives $z_{cal} = 2.01$ and			
	<i>p</i> value =0.0449 < 0.05			
	We reject Ho and conclude that there is sufficient evidence at 5% level of significance that the mean top speed of cheetahs is not 95 km/h.			
	(ii)			
	$H_0: \mu = 95$			
	$H_1: \mu > 95$			
	Under H ₀ , $\bar{X} \sim N(95, \frac{4.1^2}{40})$. $Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$			
	Using a one tailed <i>z</i> -test at 5% level.			
	Critical value = 1.64485			
	Critical region: $z \ge 1.64485$			
	$z_{cal} = \frac{\overline{x} - 95}{\overline{z_{cal}}}$			
	$\sqrt{\frac{4.1^2}{1}}$			
	$\bigvee 40$ Since H is not rejected			
	$z_{-1} < 1.64485$			
	Scal			

 $Y = X_{1} + \dots + X_{12} + T$ E(Y) = 20×12+5 = 245 Var(Y) = 1.1²×12+0.8² = 15.16 Y ~ N(245,15.16) (ii) Required probability = P(Y > 248) = 0.221 Cost of a box of biscuits, C = 0.6×(X₁+...+X₁₂)+0.2×T E(C) = 0.6×240+0.2×5 = 145 Var(C) = 0.6²×1.1²×12+0.2²×0.8² = 5.2528 C ~ N(145,5.2528) (iii) Required probability = P(142 < C < 149) = 0.864