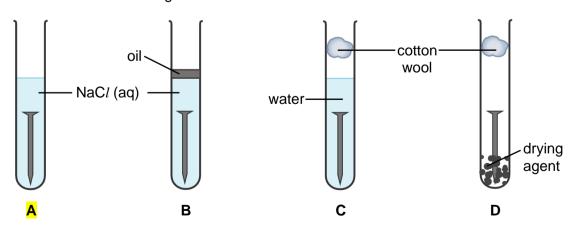


PEI HWA SECONDARY SCHOOL SECONDARY FOUR NORMAL (ACADEMIC) SC(CHEM) WEIGHTED ASSESSMENT 2 2023 (modified)

	$\overline{}$
	25
/	

Name :	()	Class : 4D	_	
Date : May 2023		TG : 4		
Duration: 30 min		Parent's Signature :		

<u>Section A – Multiple Choice Questions (5 marks)</u> Choose the correct answer and write A, B, C or D in the boxes provided.


Question	1	2	3	4	5
Answer	D	Α	A	С	A

Some of the general physical properties of metals are shown.

1	Metals are hard solids.
2	Metals have high densities.
3	Metals have very high melting points.
4	Metals are good conductors of electricity.

Which of these properties does lithium have?

- Α 1 and 2 only.
- В 3 and 4 only.
- C 2 only.
- D 4 only.
- 2 In which test tube will the rusting of the iron nail occur the fastest?

3 The table gives information about the reactivity of three metals P, Q and R.

metal	reaction with air	reaction with steam	reaction with dilute hydrochloric acid
Р	burns with sparks	forms an oxide	forms hydrogen
Q	slowly forms an oxide	no reaction	no reaction
R	slowly forms an oxide	no reaction	forms hydrogen

What is the order of reactivity of P, Q and R?

	most reactive	ve →	lea	st reactive
A	P	R		Q
В	Р	Q		R
С	Q	R		Р
D	R	Р		Q

4 The table below shows the results obtained when different metals were placed in different salt solutions.

A tick ($\sqrt{\ }$) means that a solid was deposited.

A cross (x) means that there is no visible reaction.

	aqueous salt solution of metal									
metal	barium nitrate	chromium(III) nitrate	tin(IV) nitrate	caesium nitrate						
barium		√	V	×						
chromium	×		V	×						
tin	×	×		×						
caesium	$\sqrt{}$	V	$\sqrt{}$							

Which row correctly arranges the four metals in order of increasing reactivity?

	Least reactive —			→ Most reactive
Α	caesium	barium	chromium	tin
В	chromium	barium	tin	caesium
C	tin	chromium	<u>barium</u>	caesium
D	barium	caesium	tin	chromium
D	barium	caesium	tin	chromium

5 The diagram shows an outline of the Periodic Table.

														W		
															Υ	
X																
U						V										
													Z			

Which of the following statements is true?

- A U is more reactive than X.
- **B** V is a soft metal that can be cut with a knife.
- **C** W is a very reactive metallic element.
- **D** Y is an inert gas.

Section B – Short-Answer Questions (12 marks)

Answer **ALL** the questions in the spaces provided.

6 (a) Element Q forms a fluoride with a chemical formula QF.

QF has a melting point of 988 °C.

(i) Suggest whether Q is a metal or a non-metal.

Metal [1]

(ii) Deduce the group number which Q is found in the Periodic Table and given that Q is found in Period 3, identify Q.

(ii) Q reacts with water vigourosly to form an alkali and a gas.

By using Q identified in (a)(ii), name the products formed.

alkali: sodium hydroxide gas: hydrogen gas [2]

(iv) Describe how you can test for the gas produced in (a)(ii).

Use a lighted splint and if it gets extinguished with a 'pop' sound, gas [1] produced is hydrogen.

[1]

(b) Unlike Q, argon gas will not react with fluorine or oxygen to form compounds.
Explain why.

Argon has a <u>fully-filled valence shell / completely-filled valence shell / stable octet configuration</u> and hence do not need to gain, lose or share electrons with other atoms.

7 (a) Coal-fire power station emit sulfur dioxide into the atmosphere.

Sulfur dioxide is a pollutant that damages the environment.

(i) State a source of sulfur dioxide gas.

Volcano eruption / combustion of fossil fueks

[1]

(ii) What type of oxide is sulfur dioxide classified as?

Type of oxide: acidic oxide

[1]

(iii) Explain the environmental harmful effects of sulfur dioxide.

Sulfur dioxide being an acidic oxide will dissolve in rainwater to produce acid rain. Acid rain

- corrodes buildings and sculptures made from metal or stone
- lowers the pH of soil below what many plant species can tolerate, killing them
- lowers the pH of soil below what many plant species can tolerate, killing them
- lowers the pH of soil below what many plant species can tolerate, killing them

[2]

(b) Both sulfur and oxygen belong to the same group but different periods in the Periodic Table.

Using their electronic configurations, explain why

(i) sulfur and oxygen belong to the same group,

They both have 6 valence electrons.

(ii) sulfur and oxygen belong to different periods.

They both have different number of electron shells, sulfur having 3 and oxygen 2.

Section C - Free-Response Questions (8 marks)

Answer **ALL** the questions in the spaces provided.

9 (a) The table below gives the boiling points of some members of Group 18 in the Periodic Table.

element	boiling point / °C
fluorine	-188
chlorine	-34
bromine	59
iodine	184

(i) State the common name given to Group 17 elements.

Halogens [1]

(ii) Explain why fluorine, chlorine, bromine, and iodine are placed in the same group in the Periodic Table.

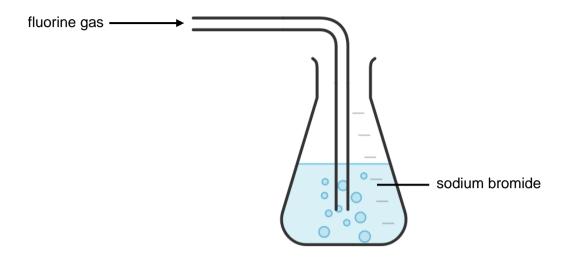
All four elements have the <u>same number of valence electrons</u> / 7 valence [1] electrons.

(iii) Suggest the colour and physical state of chlorine at room temperature.

colour **yellow green** physical state **gas** [1]

(iv) In Group 17, astatine comes after iodine.

Using the data in the table, predict the boiling point of astatine.


[1]

(v) Other than changes in melting and boiling point, suggest one more trend in the physical properties going down Group 17.

Any of the following [1]

- Colour intensity increases down the group
- Density increases down the group

(b) A student uses the set-up below to bubble fluorine gas through a colourless solution of sodium bromide. A displacement reaction occurred.

(i) Describe what would is observed when fluorine gas is bubbled through the colourless solution of sodium bromide.

A reddish-brown solution is formed / Solution turns reddish brown. [1]

(ii) Complete the word equation for the reaction that occurs between fluorine and sodium bromide.

(iii) Explain why a reaction can occur between fluorine and sodium bromide.

Fluorine is more reactive than bromine and hence able to displace [1] bromine from sodium bromide.

The Periodic Table of the Elements

								Gro	oup								
I	II								-			III	IV	V	VI	VII	0
				Key			1 H Hydrogen							,			2 He Helium 4
3	4]	proton	(atomic) n	umber			1				5	6	7	8	9	10
Li	Ве		ator	nic syn	nbol							В	С	N	0	F	Ne
Lithium	Beryllium			name								Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
7	9		relati	ive atomic ı	mass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											A <i>l</i>	Si	Р	S	Cl	Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
23	24		1		I	I .	T		1			27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge Germanium	As	Se	Br	Kr
Potassium 39	Calcium 40	Scandium 45	Titanium 48	Vanadium 51	Chromium 52	Manganese 55	Iron 56	Cobalt 59	Nickel 59	Copper	Zinc 65	Gallium 70	73	Arsenic 75	Selenium 79	Bromine 80	Krypton 84
37	38	39	40	41	42	43	44	45	46	64 47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Νb	Mo	Tc	Ru	Ŗĥ	Pd	Ag	Cd	In	Sn	Sb	Te	I	Хe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	⊥ lodine	Xenon
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57 – 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T <i>l</i>	Pb	Bi	Ро	At	Rn
Caesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	-	-
87	88	90 - 103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F/		Lv		
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copemecium		Fierovium		Livermorium		
-	-		-	-	-	-	-	-	-	-	-		-		-		
Į;	anthanoi	ds	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
			139	140	141	144	-	150	152	157	159	163	165	167	169	173	175
	actinoids	S	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
			<u> </u>	232	231	238	-	-	<u> </u>	-	-	-	-] -	_	-	-

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p)