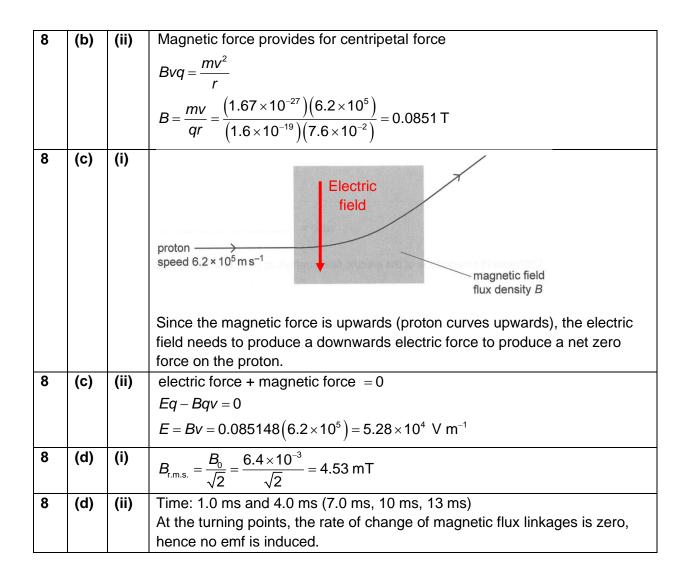
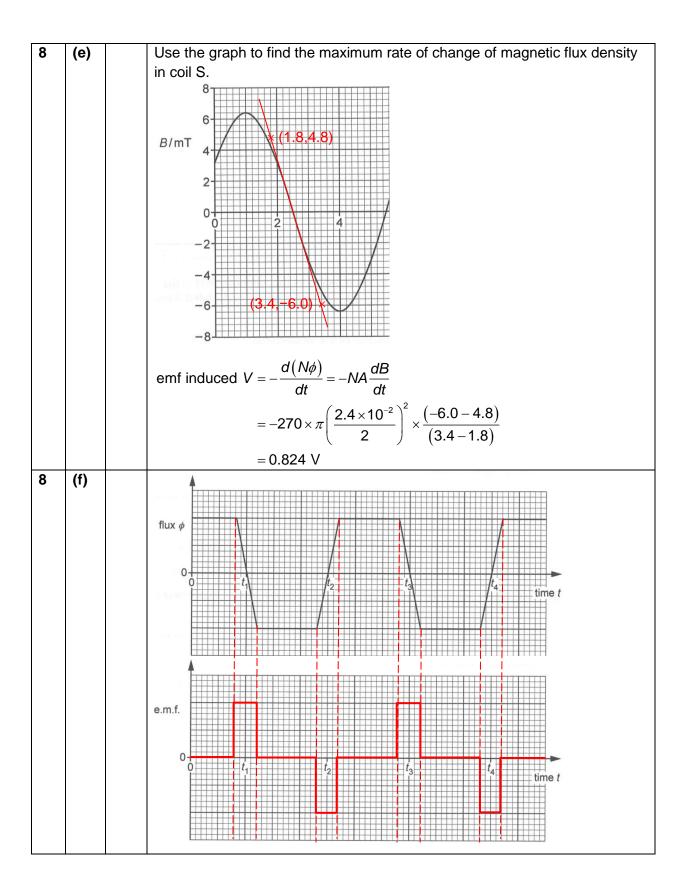

1	(a)	(i)	$a = g \sin \theta$
	(4)	(')	$= 9.81 \sin 40^\circ = 6.31 \text{ m s}^{-2}$
1	(a)	(ii)	$v^2 = u^2 + 2as$
			$v^2 = 2(6.3057)(0.56)$
			$v = 2.66 \text{ m s}^{-1}$
1	(b)	(i)	
			$F = ma_{\rm c} = m \frac{v^2}{r} = 0.072 \times \frac{(1.5)^2}{0.12} = 1.35 \text{ N}$
1	(b)	(ii)	$N + mg = F_{\text{centripetal}}$
			N = 1.35 - (0.072)(9.81) = 0.644 N
			The force is directed vertically downwards.
2	(a)		Since gravitational force is attractive in nature, in order to separate two
			masses, positive work must be done by an external force since the exernal force and displacement are in the same direction.
			Hence, gravitational potential energy and hence potential increases with
			separation of the masses.
			Since the maximum gravitational potential at infinite separation is defined to
			be zero, thus at any separation less than infinite, the gravitational potential
			is less than zero, hence it will be negative in value.
2	(b)	(i)	
2	(b)	(i)	$\phi = -\frac{GM}{r} = -\frac{\left(6.67 \times 10^{-11}\right)\left(6.2 \times 10^{23}\right)}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$
2	(b) (b)	(i) (ii)	$\phi = -\frac{GM}{r} = -\frac{\left(6.67 \times 10^{-11}\right)\left(6.2 \times 10^{23}\right)}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^{6}} = -1.22 \times 10^{7} \text{ J kg}^{-1}$ Kinetic energy: $E_{\text{K}} = \frac{1}{2}mv^{2} = \frac{1}{2}(2.8)(3.8 \times 10^{3})^{2} = 2.02 \times 10^{7} \text{ J}$ Gain in Gravitational potential energy to travel out into space:
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^{6}} = -1.22 \times 10^{7} \text{ J kg}^{-1}$ Kinetic energy: $E_{\text{K}} = \frac{1}{2}mv^{2} = \frac{1}{2}(2.8)(3.8 \times 10^{3})^{2} = 2.02 \times 10^{7} \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^{7}) \right] = 3.42 \times 10^{7} \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet.
			$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy related to the relative position of the gas
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\kappa} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy related to the relative position of the gas particles. There is no potential energy related to the relative position of the gas particles in an ideal
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy ue to the random motion of the gas particles. There is no potential energy related to the relative position of the gas particles due to negligible forces of attraction between particles in an ideal gas.
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\kappa} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy related to the relative position of the gas particles. There is no potential energy related to the relative position of the gas particles in an ideal
2	(b) (a)	(ii)	$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\text{K}} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy related to the relative position of the gas particles. There is no potential energy related to the relative position of the gas particles in an ideal gas. Internal energy is equivalent to $\frac{3}{2}nRT$
2	(b)		$\phi = -\frac{GM}{r} = -\frac{(6.67 \times 10^{-11})(6.2 \times 10^{23})}{3.4 \times 10^6} = -1.22 \times 10^7 \text{ J kg}^{-1}$ Kinetic energy: $E_{\rm K} = \frac{1}{2}mv^2 = \frac{1}{2}(2.8)(3.8 \times 10^3)^2 = 2.02 \times 10^7 \text{ J}$ Gain in Gravitational potential energy to travel out into space: $\Delta U = m(\Delta \phi) = 2.8 \left[0 - (-1.22 \times 10^7) \right] = 3.42 \times 10^7 \text{ J}$ Since the kinetic energy is not sufficient to overcome the gravitational potential required to travel out into space, the rock will return to the surface of the planet. Internal energy of an ideal gas is a function of its state and is the <u>sum</u> of the microscopic kinetic energy ue to the random motion of the gas particles. There is no potential energy related to the relative position of the gas particles due to negligible forces of attraction between particles in an ideal gas.


2021 A Levels H2 Physics Paper 3 suggested solutions


			$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	
			$\frac{(1 \times 10^{5})(3.2 \times 10^{-3})}{12 + 273} = \frac{(1 \times 10^{5})(3.6 \times 10^{-3})}{\theta + 273}$	
			$\theta = \frac{3.6}{3.2} (12 + 273) - 273 = 47.625 = 47.6^{\circ}C$	
3	(b)	(ii)	$W = p\Delta V = 1.0 \times 10^{5} \times (3.6 \times 10^{-3} - 3.2 \times 10^{-3})$	
			= 40 J	
3	(c)	(i)	Using 1 st Law of Thermodynamics:	
			$\Delta U = Q + W$	
			$\Delta U = 101 + (-40) = 61 \text{ J}$	
			(W _{on gas} = - W _{by gas against atmosphere})	
3	(c)	(ii)	PV = NkT	
			Increase in KE per molecule = $\frac{\Delta U}{N} = \frac{\Delta U(kT)}{PV} = \frac{61(1.38 \times 10^{-23} \times (12 + 273))}{(1 \times 10^5)(3.2 \times 10^{-3})}$	
			$\frac{1}{N} = \frac{1}{N} = \frac{1}{N} = \frac{1}{(1 \times 10^5)(3.2 \times 10^{-3})}$	
			$= 7.50 \times 10^{-22} \text{ J}$	
4	(a)	(i)	0.50 cm	
4	(a)	(ii)		
			$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.8} = 7.85 \text{ rad s}^{-1}$	
4	(a)	(iii)	$v_0 = x_0 \omega = (0.50 \times 10^{-2})(7.8540) = 0.0393 \text{ m s}^{-1}$	
4	(b)		y/cm -0.5 -1.5 Same starting amplitude, with decreasing amplitude a time passes due to	

5	(a)		Diffraction of a wave is the spreading of the wave after it passes through a
Ŭ	(4)		small opening or around an obstacle.
5	(b)	(i)	Single slit diffraction:
			double slit made badded added added a screen
			parallel light w/2
			wavelength 590 nm $\psi/2$
			2.60 m
			$\sin\theta = \frac{\lambda}{b}, \qquad \tan\theta = \frac{w/2}{2.60}$
			at small angle, $\sin\theta \approx \tan\theta$
			-
			$\frac{\lambda}{b} \approx \frac{w}{2 \times 2.6}$
			$w = \frac{590 \times 10^{-9}}{0.10 \times 10^{-3}} \times 2 \times 2.6 = 0.0307 \text{ m}$
5	(b)	(ii)	Let fringe separation be X.
			$X = \frac{\lambda D}{a} = \frac{(590 \times 10^{-9})(2.6)}{1.4 \times 10^{-3}} = 0.0010957 \text{ m}$
			number of fringes = $\frac{0.0307}{0.0010957}$ = 28
			0.0010957
			(more accurate way: if we take w/2 (half the width, first minima) and divide
			by X, we get 14.009, which means the 14 th fringe falls at the minima, so can
			only the 13 th fringe, so one side there are 13 fringes, the other side there
			are also 13 fringe, then plus the zero-order fringe we get $13 + 13 + 1 = 27$)

6	(a)	(i)	160
U	(a)		
		(ii)	I/mA
			120
			80-
			S S
			40-
			0 100 200 300 400 500 600 V/mV
			Comment: Maximum power is obtained when the area under the graph is
			the largest (most squarish).
6	(b)	(i)	/ = 100 mA, V = 500 mV
			5 V 0.500 5 0 0
			$R = \frac{V}{I} = \frac{0.500}{0.100} = 5.0 \ \Omega$
6	(b)	(ii)	$P = VI = 0.500 \times 0.100 = 0.0500 \text{ W}$
6	(b)	(iii)	e.m.f. of solar cell (when $I = 0$) = 0.550 V
			∴ at $V = 0.500$ V and $I = 0.100$ A,
			Using $\varepsilon = IR + Ir$
			0.550 = 0.500 + 0.100r
			$r = 0.500 \ \Omega$
			Comment: Mistakes include working out the internal resistance at points
			other than the one required. Maximum power theorem does not work for
L			such a circuit.
7	(a)		Similarity: Both potentials are inversely proportional to the distance from
			point mass/point charge.
		1	Difference: Electrical potential can be positive or negative for positive and
			negative point charges respectively. However, gravitational potential is
			always negative.
7	(b)	(i)	Opposite charges.
			The charge at A is positive since the potential at smaller values of x is
			positive, and the charge at B is negative since the potential at larger values
1		1	of x (closer to 12 cm) is negative.
			OF X (CIOSEI TO TZ CITI) IS NEGATIVE.

9 (a) (i) 1.Tthere exist a minimum frequency of the radiation b	•
are emitted and detected regardless of the intensity of the radiation comes in packets of energy and the energy	-
on frequency of the radiation.	
2. The maximum kinetic energy of the emitted photoe	electrons is not
dependent on the intensity of the incident radiation bu frequency of the radiation.	ut is dependent on the
OR Option: 3. there is no time delay in emission of el frequency above the threshold frequency is shone on	-
9 (a) (ii) Since atoms have discrete energy levels which electr excited atom will have its electrons in higher energy level. will de-excite and transit to a lower energy level.	evels and the electrons
This de-excitation transition of electron from a higher energy level will result in an emission of photon that h	nas an energy
equivalent to the difference in the energy between the	
Given the discrete energy levels, there are only discrete transitions that the electrons can take. Hence, the physical discrete energy levels are only discrete energy levels.	•
excited atoms will be of discrete energy. This leads to	
emission spectrum (distinct lines representing distinc	t frequencies of
photons.)	
9 (b) (i) $E = hf = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^8)}{(340 \times 10^{-9})}$	
$L = III = \frac{1}{\lambda} = \frac{1}$	
$= 5.85 \times 10^{-19} \text{ J}$	
$=\frac{5.85\times10^{-19}}{1.6\times10^{-19}} \text{ eV}$	
$=\frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}}$ eV	
= 3.6563 eV	
= 3.66 eV	
9 (b) (ii) The least energetic photon produced will be a transiti	
-13.6 eV. This energy difference produces a photon	bi energy = 10.2 ev.
Given that the UV end of the visible light spectrum ha	is a photon energy of
about 3.66 eV, this transition produces a photon with	
than the most energetic photon within the visible light	spectrum and hence
lies outside of the visible light spectrum range.	
9 (c) (i) $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{53} = 0.013078 = 0.0131 \text{ day}^{-1}$	
1/2	

9	(c)	(ii)	$N = N_0 e^{-\lambda t}$
			$N = \frac{m}{m_1} e^{-0.0131(120)}$ $N = \frac{5.7 \times 10^{-12}}{7 \times (1.66 \times 10^{-27})} e^{-0.0131(120)}$ $N = 1.02 \times 10^{14} \text{ nuclei}$
9	(c)	(iii)	Since beryllium-7 (in an excited state) decays by emitting only gamma rays, there is no change in the number of neutrons and protons. Gamma rays are energy packets without a change in proton number or neutron number or electron number. Since the nucleon number and proton number of beryllium-7 stays the same after radioactive decay, a decayed beryllium-7 stay as beryllium-7 without a drop in the total number.
9	(d)		By conservation of linear momentum: $0 = p_{\gamma} + p_{\text{Be-7}}$ $0 = \frac{E_{\gamma}}{c} - m_{\text{Be-7}}v$ $\frac{0.48 \times 10^{6} \times 1.6 \times 10^{-19}}{3 \times 10^{8}} = (7 \times 1.66 \times 10^{-27})v$ $v = 2.20 \times 10^{4} \text{ m s}^{-1}$ Note that: $E_{\text{photon}} = hf = \frac{hc}{\lambda} = \left(\frac{h}{\lambda}\right)c = pc$