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National Junior College 
2016 – 2017 H2 Further Mathematics 
Topic F6: Numerical Methods (Lecture Notes) 

 
  
Key Questions to Answer: 
 

 What is a continuous function? 
 How to locate the roots of an equation by means of simple graphical or numerical 

methods? 
 How to use the method of linear interpolation and Newton Raphson method to find 

an approximation to a root of an equation? 
- What are the cases where the method fails to converge?  

 How to use iterations involving recurrence relations of the form  1 Fn nx x   to 
determine a root to a prescribed degree of accuracy? 

- What are the cases where the method fails to converge? 
 How to approximate the integral of a function using the trapezium rule and 

Simpson’s rule?  
 How to approximate solutions of first order differential equations using Euler 

method and improved Euler method respectively? 
  
 
Background 
 
In this topic, we will learn to use various numerical methods to approximate the roots of an 
equation which cannot be solved exactly., for example solving cosx x . For many 
engineering and design problems, we cannot have an analytic solution but there is no real need 
for one. In such cases, all that is needed an accurate approximation to the actual solution. We 
term this a numerical solution to the problem, and its associated method a numerical method.  
 
 
§1 Continous Function 
 
A function f defined on  ,a b  is continuous if for all points  0 ,x a b , for each 0   . there 

exists 0   such that whenever x a   , we have    f fx a   . 

Informally to say, a function f defined on  ,a b  is continuous if it can be sketched from one 
end to the other with one stroke of the pen.  
 
Can you list some functions which are continuous?  
 
A function can fail to be continuous at a point x a  for any one of the following three 
reasons.  
  f a  does not exist  

  limf
x a

x


 does not exist 

    limf f
x a

x a


  
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§2 Location of Roots 
 
Let  fy x  be a function of ݔ. The number   is said to be a solution (or root) of the equation 

 f 0x   when   satisfies  f 0.    
 
Consider a continuous curve  f .y x  
 
If  1f x  and  2f x  have opposite signs, the curve must cross the axisx   between 1 2 and .x x   
 
 
 
 
 
 
 
 
 
 
 
In general, if  f x  is continuous and  

(i)    1 2f f 0x x   (i.e.  1f x  and  2f x  have opposite signs), then the equation  f 0x   

has an ODD number of real roots between 1x  and 2x  (Some of which may be repeated). 
 
 
 
 
 
 
 
 
 
 
(ii)      1 2 1f f 0 (i.e. f  andx x x   2f x  have the same sign), then the equation  f 0x   

has either NO real roots or an EVEN number of real roots between 1x  and 2x  (Some of 
which may be repeated). 

 
 
 
 
 
 
 
 
          
 
  

  

 There is a root between  and   

  

 
x  

 

 x 

 

 

1 root in    3 root in    

 

 

x  

3 root in    

 x 

 

 repeated roots 

No real roots in   2 real roots in   4 roots in   

 x 

 

 

 

 x  

 

x 
  repeated roots 
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Example 2.0.1 
 
Explore the possibility of real roots for   3 2f 2 1x x x   .  
 
For   2 30,1 ,  1 0 and 2 0.x x x      

    f 0 x 0,1 .x     
For 1,x   3 22 0x x    

    f 0 1,x x       

Thus,    f 0 0,x x      

 f x  has no real roots for all 0.x     

For   3 2, 1 ,  2 0 and 1 0x x x        

    f 0 , 1x x        

 f x  has no real roots for all 1.x     
Now,  f 1 2 0     and  f 0 1 0    

  f x  has either 1 or 3 real roots in  1,0   

 
 
§3 Approximate Roots of Equations using Graphical Method 
 
The real roots of an equation  f 0x   can be located and their approximate values found by 
sketching (plotting)  fy x  and locating its x   intercepts on graph paper. 
 
It is often better to rearrange  f 0x   into the form    1 2f fx x , where  1f x  and  2f x  
are standard functions whose graphs can be easily sketched or plotted on graph paper. The x  
values of the points of intersection of the two graphs then give the roots of the equation 
 f 0.x    

 
While graphical methods are quick, it is nevertheless a visual method that relies heavily on 
graphing programs. Is there a computational method that can produce such numerical 
approximations? Preferably, one that can even be carried out by hand (if needed).  
 
 
§4 Approximate Roots of Equations Using Numerical Methods 
 
This is the process of successive approximations whereby each approximation is used as a base 
for the next approximation. We must first find an interval in which the root lies (either by 
graphical method or by the investigation of the sign of  f x ). 
 
Note: 
 Such methods can be used only if  f x  is continuous on this interval. 
 There can be only one root within this interval. 
 
In this section, we will learn the following numerical methods. 
(a) Interval Bisection 
(b) Linear Interpolation 
(c) Newton-Raphson 
(d) Iterations involving recurrence relations of the form  1 Fn nx x     
Convergence to the roots for (a) and (b) are guaranteed. However, this is not so for (c) and 
(d).  
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4.1 Interval Bisection 
 
Suppose the equation  f 0x   has only one root   in the interval  ,a b  . Then  f a  and 

 f b  must be of opposite signs. 
 
 
 
 
 
 
 
 
 
 

Let .
2

a bc 
   

 
Case (I): If  f a  and  f c  are of opposite signs, then the root  , .a c    
 
 
 
 
 
 
 
 
 
Case (II): If    f  and fc b are of opposite signs, then the root  , .c b    
 
 
 
 
 
 
 
 
 
 
This process of bisection is repeated until the desired degree of accuracy is obtained. 
 
  

  

 There is a root between  and   x 

 
 

 

x 

 

 

 

 
  

x 
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Eample 4.1.1   
 
Find the larger root of e 3 0x x   correct to 1 decimal place. 
 
Solution: 
 

 
   
 

Let f e 3

f ' e 3. f ' 0 ln 3 1.1

f '' e 0 
 ln 3 gives a minimum point.

x

x

x

x x

x x x

x x
x

 

    

  

 


  

  is the largest root. 
 

 
 2

Now f 1 e 3 0
1,2

      f 2 e 6 0


    
   

  

 
To find   : 

Estimate of root f (ݔ) Interval containing root 
1 < 0  
2 > 0  1, 2   

1.5 < 0  1.5, 2   
1.75 > 0  1.5,1.75   

1.625 > 0  1.5,1.625   
1.5625 > 0  1.5,1.5625   

1.53125 > 0  1.5,1.53125   
 
Since  1.5 1.53125,  1.5 1.d.p      
 
Note: 
(i) Convergence to the root is guaranteed. 
(ii) This method gives a slow convergence, i.e., many iterations are required. 
 
 
4.2 Linear Interpolation 
 
Let  ,a b   be the solution of  f 0.x   This method gives a better approximation to   by 
reducing the interval where   lies. 
 
 
 
 
 
 
 
 

 
 
 

  
  

Let     , 0

          , 0

          , 0

          , f

          , f

A a

B b

C c

D a a

E b b











  

 
 

 
x 
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Join D  to .E  We see that ܿ gives a better approximation to .   
 
Let    f , f .p a q b   [The aim is to find an expression for ܿ.] 
 
Considering triangles ACD  and BCE , by similar triangles,  

AC AD
BC BE

  

 

   
   

f f
i.e. .

f f

c a p
b c q
pb pc cq aq
c q p pb aq

pb aqc
q p

b a a b
c

a b





  

  











 

 
Next, compute  f .c  The sign of  f c  determines if   lies in  ,a c  or  ,c b . With this new 
interval, we apply the same method until the desired accuracy is obtained. 
 
Any error in the approximation depends on the shape (gradient and concavity) of the curve 
in the interval. 
 

 Positive gradient   f ' 0x    Negative gradient   f ' 0x    
Overestimating 
 

  f ' f ''( ) 0x x   

 
 
 
 
 
 
 
 
Curve concave downwards 

 
 
 
 
 
 
 
 
Curve concave upwards 

Underestimating 
 

  f ' f ''( ) 0x x   

 
 
 
 
 
 
 
 
Curve concave upwards 

 
 
 
 
 
 
 
 
Curve concave downwards 

  
  

x 
  

x  
 

  
x 
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Example 4.2.1 
 
Use linear interpolation to fnd the larger root of the equation ln 2x x   correct to 3  decimal 
places. 
 
Solution: 
 

 

   

   2

Let f ln 2
1f ' 1. When f ' 0,  1.

1f '' 0 \ 0 .

 1 gives a maximum point.

x x x

x x x
x

x x
x

x

  

   

    

 


  

 
Let   be the larger root 1.   To find   : 

Estimate of root f (ݔ) Interval 
containing ߙ 

 
3 

        > 0  

4 < 0  3, 4   
3.5 < 0  3,3.5   

   
   

3 f 3.5 3.5 f 3
3.14256 (5.d.p)

f 3.5 f 3





  
> 0  3.14256,3.5

   
   

3.14256 f 3.5 3.5 f 3.14256
3.14611 (5.d.p)

f 3.5 f 3.14256





              > 0  3.14611,3.5

   
   

3.14611 f 3.5 3.5 f 3.14611
3.14619 (5.d.p)

f 3.5 f 3.14611





 

> 0  3.14619,3.5

 
[Check if 3.146   ] 
 
 

 
f 3.1455 0

3.1455,3.1465
f 3.1465 0


  
 

  

So,  3.146 3.d.p    
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Example 4.2.2 
 
Show that the equation 3 5 3 0x x    has only one root between 2 and 2.5. Use linear 
interpolation to find an approximation to this root correct to 2 decimal places. 
 
Solution: 
 
Let   3f 5 3.x x x     

 
 

f 2 5 0

f 2.5 0.125 0

   
  

 There is at least 1 root,   , in  2, 2.5   

Now,    2f ' 3 5 0 2, 2.5x x x       

 f x  is increasing in  2, 2.5   

 f x  cuts the axisx   only once in  2, 2.5 . 

 f x  has only 1 root in  2, 2.5 . 
Estimate of root f (ݔ) Interval containing root 

2 < 0  
2.5 > 0  2, 2.5   

   
   

2 f 2.5 2.5 f 2
2.4878 (4.d.p)

f 2.5 f 2





  
< 0  2.4878, 2.5   

   
   

2.4878 f 2.5 2.5 f 2.4878
2.4908 (4.d.p)

f 2.5 f 2.4878





  
< 0  2.4908, 2.5   

 
 [Check if 2.49   ] 
     f 2.485 0 and f 2.494 0 2.485, 2.494      

 So, 2.49   (2.d.p) 
 
Note: 
(i) Convergence to the root is guaranteed. 
(ii) The rate of convergence to the root depends on how the gradient of the curve changes 

in  ,a b  (i.e. the rate of change of  f ' x  in (ܽ,ܾ)). 

If  f ' x  changes considerably, then the 
rate of convergence is slow. 

If   f ' x does not change much, then the 
rate of convergence is fast. 
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4.3 Newton–Raphson’s Method 
 
Newton’s method is the best-known procedure for finding the roots of an equation. Due to its 
simplicity in formula and fast convergence, it is often the first choice to approximate a solution 
to an equation. 
 
Let   be the root of the equation  f 0x   and 1x  the first approximation to .   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Geometrically, we extrapolate the tangent line to the curve at 1x  to cut the axisx   at 2.x   

2x  is usually closer to   than 1.x   
 
Similarly, the tangent to the curve at 2x  cuts the x axis  at 3 ,x  which is closer to   than 2.x  
Repeat these iterations until 1nx   to achieve the desired degree of accuracy. 

Equation of tangent at :A  
   1

1
1

f
f '

y x
x

x x





  

i.e.     1 1 1f f ' .y x x x x     
When this tangent cuts the ݔ-axis, 20, .y x x    

     
 
 

 
 

1 1 2 1

1
2 1

1

1
2 1

1

0 f f '

f
f '

f
f '

x x x x

x
x x

x

x
x x

x

  

  

 

 

Repeating the same process,  
 

2
3 2

2

f
.

f '
x

x x
x

    

Thus we have the Newton–Raphson’s formula:  
 
 
 
 
 
(This formula is given in the formula sheet MF26) 

 
 1

f
.

f '
r

r r
r

x
x x

x     

 x 
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Example 4.3.1 
 
Using the Newton–Raphson method, find the root of the equation sec 2x x   , correct to 2 
decimal places, starting with the approximate value 1x  . 
 
Solution: 
 
Let  f sec 2x x x     

 f ' sec tan 1x x x    
 
Let 1 1x   and   be the equation’s root. By Newton – Raphson’s method: 

 
 

 
 

 
 
 
 

1
2 1

1

3

4

f f 1
1 0.7809 (4.d.p)

f ' f ' 1

f 0.7809
0.7809 0.7021 (4.d.p)

f ' 0.7809

f 0.7021
0.7021 0.6965 (4.d.p)

f ' 0.7021

x
x x

x

x

x

    

  

  

  

[Check if 0.70]    
 
 
 

 
f 0.695 0

0.695,0.705
f 0.705 0


  
 

  

0.70 (2.d.p)    
 
 
Example 4.3.2 
 
Use the Newton – Raphson’s method to obtain an approximation to the thp  root of any number 
ܽ. Hence determine 30  to 3 decimal places. 
 
Solution: 
 

Let   be the pth  root of ܽ, i.e. 
1

,  or .ppa a     
Let     1f f ' .p px x a x px      By Newton – Raphson’s method, 

 
 

 

1

1

1

1

f
f '

      

1      

1      1 .

r
r r

r

p
r

r p
r

p p
r rp

r

p
rp

r

x
x x

x

x ax
px

px x a
px

a p x
px









 


 

    

    
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To determine 30,  let 30, 2.p     

Then 2
1

1 [30 ].
2r r

r

x x
x     

Observe that 25 30 36 5 30 6.       
Let 1 5.5x   be the first approximation. 

     

 

2 2
2 1

1

2

3

1 130 30 5.5 5.47727 (5.d.p)
2 2 5.5

30 5.47727 5.47723 (5.d.p)
2 5.47727

x x
x

x

    


 

  

[Check if 30 5.477]   
 
 

 
f 5.4765 0

30 5.4765,5.4775
f 5.4775 0

30 5.477 (3.d.p)

  
 

 

  

 
Newton-Raphson Method Can FAIL!! 
 
The rate of convergence using Newton-Raphson’s method depends on the first approximation 
and the shape of the curve in the neighbourhood of the root. 
Newton-Raphson’s method fails when 
 
(I)  1f ' x  is almost zero, i.e., gradient at 1x  is too gentle. 
 
 
 
 
 
 
 

 
 

  

Note that f( ) may not 
be defined or on the 
same piece 

  
 

 

x 
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(II) There is a non-stationary/stationary point of inflexion near .   
 
 
 
 
 
 
 
 
(III) 1x  is too far from   (or there is a turning point between 1x  and  ). 
 
 
 
 

 
 

 
 
 
 
 
 
 
(IV) It converges to another root. 
 
 
Any error in this method again depends on the shape (gradient and concavity) of the curve. 
 

 Positive gradient (  f ' 0x  )  Negative gradient   f ' 0x    
Underestimating 
 

  f ' f ''( ) 0x x   

 
 
 
 
 
 
 
 
Curve concave downwards 

 
 
 
 
 
 
 
 
Curve concave upwards 

 
Overestimating 
 

  f ' f ''( ) 0x x   

 
 
 
 
 
 
 
 
Curve concave upwards 

 
 
 
 
 
 
 
 
Curve concave downwards 

 
 

 
 

 

 
x  

 
 

 

 
x 

x 
 

 
x 

 

x 
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Example 4.3.3 
 
Let   3f e 1.xx x     
 
(i) Sketch the appropriate graphs to show that the equation  f 0x   has exactly one real 

root .  Find the interval  , 1n n  , where n  is an integer, in which   lies.  
 
(ii) Use the method of linear interpolation once on this interval to obtain an estimate ܿ , of the 

root   to 5 decimal places. 
 
(iii) Taking ܿ as the initial value, apply the Newton-Raphson method to estimate the value of 

  correct to 3 decimal places. 
 
(iv) Find  f ' x  and  f '' x  in terms of ݔ. By considering the signs of  f ' x  and  f '' x  for all 

real values of ݔ, explain why the linear interpolation method gives an overestimate of .   
 

Does the Newton-Raphson method also give an overestimate? Explain. 
 
Solution: 
 
(i) Sketch 3e xy   and 1.y x   
 
 
 
 
 
 
 
 
 
 
 
 

 
 

From sketch,  f 0x   has only 1 real root .   

 
 

 
f 1 0.0497871 0

1, 2
f 2 0.9975212 0


    
  

, so 1n  . 

 
(ii) Using linear interpolation on  1,2 ,  

   
   

f 2 2 f 1
1.04754 (5.d.p)

f 2 f 1
c


 


  

 
 
(iii) By Newton-Raphson’s method,   3f ' 3e 1xx   .  

x 

y 

O 

1 

1 

 

 

– 1 

www.KiasuExamPaper.com 
402



 National Junior College Mathematics Department 2016  

2016 – 2017 / H2 FMaths / Numerical Methods (Teacher’s Version) Page 14 of 33 

By GC,  

 
 
 
   

1

1
2 1

1

2
3 2

2

1.04754
f

1.04367 (5.d.p)
f '

f
1.04367 5.d.p

f '

x
x

x x
x

x
x x

x



  

  

 

[Check if 1.044   ] 
 
 

 
f 1.0435 0

1.0435,1.0445
f 1.0445 0


  
 

  

So, 1.044 (3.d.p)    
 
(iv)    3 3f ' 3e 1,  f '' 9e .x xx x       

Now,  f ' 0x   for all ݔ  f x  is an increasing function 

 f '' 0x   for all ݔ    f x  concave downwards. 
  linear interpolation gives an overestimation.  

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
  

Note that tangent at x c  cuts the x-axis on the left of 
.   

  Newton-Raphson method gives an underestimation 

x 
 

 
  

x 
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4.4 Iterative formula of the recurrence relations of the form:  1 Fn nx x    
 
 
Let  ,a b   be the root of the equation  f 0x  . The equation can be re-written in the form 

 Fx x where  F x  is another expression of x. Then   is the value of x at the point of 

intersection of y x  and  F .y x   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Let 1x  be the first approximation to the root .   
 
Using the iterative formula  1 F ,n nx x   we obtain  2 1F .x x   
 
From the above diagram, we see that 2x  is closer to   than is 1.x  i.e. 2x  is a better 
approximation to .   
 
Applying the iterative formula again, we obtain  3 2F ,x x  where 3x  is a better 
approximation to   than is 2x  .We can repeat the above process until the required degree of 
accuracy is achieved. 
 
 
Example 4.4.1 
 
Show that the equation  ln 8x x   has a root between 1 and 2. Calculate this root correct to 

3 decimal places using the formula  1 ln 8 .n nx x     
 
Solution: 
 

x 

y 

 

 

 

 

 

 

 

 

  

 

 

O 
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Let    f ln 8 .x x x     

 
 

f 1 ln 7 1 0.946 0

f 2 ln 6 2 0.208 0

   
    




 f (ݔ) has at least 1 root in  1, 2 . 

 

Now,    1f ' 1 0 1,2
8

x x
x


    


  

 f x  is decreasing in  1, 2   

 f x  cuts x-axis only once in  1, 2   
 
Let   be the equation’s root and 1 1x   be the first approximation to .  By GC, 

1 1x    
   
 
 
 
 

2 1

3

4

5

6

F F 1 ln 7 1.94591 (5.d.p)

ln 8 1.94591 1.80073 (5.d.p)

ln 8 1.80073 1.82443 (5.d.p)

ln 8 1.82443 1.82060 (5.d.p)

ln 8 1.82060 1.82122 (5.d.p)

x x

x

x

x

x

   

  

  

  

  

  

 
[Check if 1.821   ] 
 
 

 
f 1.8205 0

1.8205,1.8215
f 1.8215 0


  
 

  

So, 1.821 (3.d.p)    
 
 
Example 4.4.2 
 

Use the iterative formula  2
1

1 1 ,
5n nx x    where 1 0,x   to find the positive root of 

2 5 1 0x x   , correct to 4 decimal places. Discuss, with the aid of a graph, the behaviours of 
the sequence 1 2 3, , ,...x x x  when (i) 1 6x    (ii) 1 5.x     
 
Solution:   
 

 

2

2

2

5 1 0
5 1

1 1
5

x x
x x

x x


  


  

 


 Iterative formula is    2
1

1 1      F
5n nx x x        

 
Let   2f 5 1x x x    and   be the equation’s root. 
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   

 

 

 

1

2

2
3

2
4

2
5

0
1F 0 1 0.2
5

1 1 0.2 0.192
5
1 1 0.192 0.1926272
5
1 1 0.1926272 0.192579 (6.d.p)
5

x

x

x

x

x



  

  

  

  

  

[Check if 0.1926   ] 
 
 

 
f 0.19255 0

0.19255,0.19265 0.1926
f 0.19265 0

 
    
 

  

 
(i) and (ii):  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Note: 
(i) Convergence using the simple iterative formula  1 Fn nx x   is NOT guaranteed. 

(ii) A given equation  f 0x   may give rise to several different arrangements of the form 

 Fx x , but not all the corresponding iterative processes will converge to the required 
root. 

(iii) In general, the iteration ࢞࢔ା૚ = F(࢞࢔) may converge to a root ࢻ if  F ' 1    
 
 
 

Note that 
 
 

f 5 1 0

f 6 5 0

    


   
 other root 

lies in  6, 5    
From sketch, when 6,x    the 
sequence 1 2 3, , ,...x x x  diverges from the 
2 roots. 
When 5,x    the sequence 1 2 3, , ,...x x x  
converges to the positive root .   

y 

O x 

y = x 
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§5 Approximattion of Integral of a Continuous Function Using Trapezium Rule and 
Simpson’s Rule 

 
 
In modern times, we look at the calculation of an area bounded by non-straight lines using 
definite integrals. When the going gets tough for finding the antiderivative of the integrand,  
usually a numerical method is called for to estimate the value of the definite integral. We will  
now look at two methods for finding the approximate value of an area bounded partly by a  
curve and the x-axis.  
 
 
5.1 Trapezium Rule  
  
   
 
 
 
 
 

 
 
 

  
 

 
If the area represented by  f  d

b

a
x x  is divided into strips, each of width h, as shown above, 

then each such strip is approximately a trapezium. Using the sum of the areas of these strips as  
an approximation for the actual value of the area, we have  
  
  
 
   
 
 
 
 
 
 
 
 
i.e. 

 
                     

          

0 1 1 2 2 3 3 4

0 1 2 3 4

f  d f f f f f f f f
2 2 2 2

f 2 f f f f
2

b

a

h h h hx x x x x x x x x x

h x x x x x

       

     




 

 
This method is known as trapezium rule and here we used it with five ordinates.  
 
Note that the ordinates must be evenly spread out (i.e. the width of all strips must be the same).  

 

O   
 

 

O a b 
x 

y 

         

O x 

y 

     

 
x 

y 

h h h h
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Generalising, used with n ordinates and let the closed interval  ,a b  be partitioned into equal 

intervals of width 
1

b ah
n





 as follows: 

0 1 1na x x x b    . 
The trapezium rule is 
 

                       
      

          0

1

1

2

0

1 2 1

f f
2

f

f  

2 f f f

d

f
2

n

k k
k

n

b

a

n

h x x

h x x x x

x x

x






 

 

      


 

                               
 
Example 5.1.1 
 
Use the trapezium rule, with five ordinates, to evaluate 20.8

0
e  dx x . 

 
Solution: 
  
Let   2

f exx  . 

We need to partition the closed interval  0,0.8 into equal intervals of width 
5 1

0.8 0 0.2h 





. 
Thus     0f f 0 1x   ,  

     20.
1

2 0.04f f 0.2 e ex    ,  

     20.
2

4 0.16f f 0.4 e ex    , 

     20.
3

6 0.36f f 0.6 e ex    , 

     20.
4

8 0.64f f 0.8 e ex    . 
Using trapezium rule,  

          20.8

0 2 40 1 3
0.2 f 2 f f f fe  d
2

x x x x xx x       

 

 

0.04 0.16 0.36 0.640.1

1.0191783
1.02 to 3 sig

1 2

ni

e

ficant figu s

e e

e

e

r

   




   

 

Can you sketch the region represented by 20.8

0
e  dx x  and its approximated area using the 

trapezium rule on the same diagram?    
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5.2  Simpson’s Rule 
 
Suppose that the area represented by  f  d

b

a
x x  is divided by the ordinates 

     0 1 2f ,  f ,  fx x x  into two strips each of width h as shown below. A particular parabola, 
2y ax bx c   , can be found passing through the three points with the same x-coordinates. 

Simpson’s rule uses the area under that parabola as an approximation for the value of the area 
under the curve  fy x . 
 

 
 
 
 
 
 
 

 
 

 

i.e.    1

1

2f  d  d            --- 1
b x h

a x h
x x ax bx c x




     

If 2y ax bx c    is the parabola through the ordinates as shown above, then   1 0, fx h x , 

  1 1, fx x ,   1 2, fx h x  are on this parabola., 
i.e. 

       
       
       

2
0 1 1

2
1 1 1

2
2 1 1

f                   --- 2

f                               --- 3

f                   --- 4

x a x h b x h c

x a x b x c

x a x h b x h c

    

  

    

 

 

Now the area represented by 1

1

2  d  
x h

x h
ax bx c x




   

           3 3 2 2
1 1 1 1 1 1 =

3 2
a bx h x h x h x h c x h x h                    

 
which simplifies to  

         2 2
1 1 1 1 1 2 { } 3 2 6

3
h a x h x h x h x h b x c           

Then using (2), (3) and (4) we find that  

      1

1

2
0 1 2 d  = f 4f f

3
x h

x h

hax bx c x x x x



    . 

From (1),  

        0 1 2f  d  f 4f f
3

b

a

hx x x x x   . 

O   
 

 

 

x 

y 

O   
 

 

 

x 

y 

a b 

 

 

   

h h
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This argument can be extended to cover any even number of strips, i.e. any odd number of 
ordinates.  
 
Hence Simpson’s Rule, with  2 1n   ordinates, is 

                0 1 2 3 4 2 1 2f  d  f 4f 2f 4f 2f 4f f
3

b

n na

hx x x x x x x x x         

. 
 
Note that the use of Simpson’s Rule requires an odd number of ordinates. For ease of 
computation, the ordinates used can be arranged in the form  

    1st last 4 2nd 4th 2 3rd 5th
3
h

         

or         
2 2 2

0 2 2 1 2
1 1

f f 4 f 2 f
3

n n

n r r
r r

h x x x x



 

    
 

  . 

 
   
Example 5.2.1 
 
Use Simpson’s Rule with five ordinates to find an approximate value for 

 

0
sin  d


  .  

 
Solution: 
 

Taking five ordinates from 0   to    gives four strips each of width 
4


. 

Thus  
     0f f 0 sin 0 0x   , 

    1/
1

4f f sin 2
4 4

x        
 , 

   2f f sin 1
2 2

x       
 , 

    1/
3

43 3f f sin 2
4 4

x        
 , 

     4f f sin 0x    . 
Hence, using Simpson’s Rule,  

          

   

 

0 4 1 3 20

1/4 1/4

1sin  d f f 4 f f 2f
3 4

0 0 4 2 2 2 1
12
2.284768109
2.28  3 significant figures

x x x x x
  

  

              

      






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§6 Approximation of Solutions of First Order Differential Equations Using Euler’s 
Method  

 
While it is usually desirable to be able to obtain exact or analytic solutions to a differentiation 
equation, it is not always possible to do so.  In fact, there are many differentiation equations 
(related to important problems in the real world) which cannot be solved exactly. 
 
So what do we do when faced with a differential equation that we cannot solve?   
The answer depends on what you are looking for.  If you are only looking for long-term 
behaviour of a solution, you can always sketch a slope field.  The problem with this approach 
is that it is only really good for getting general trends in solutions.  There are times when we 
will need something more.  For instance, we may need to determine how a specific solution 
behaves or to find some values that the solution will take.  
 
In these cases we resort to numerical methods that will allow us to approximate solutions to 
differential equations.  There are many different methods that can be used to approximate 
solutions to a differential equation.  In this section, we are going to look at one of the oldest 
and easiest method, and apply it to initial value problems.  This method is called the Euler’s 
method, named after the Swiss mathematician Leonhard Euler.  In addition, we will look at the 
improved Euler’s method, which is essentially an improvement from the Euler’s method. 
 
 
6.1 Principle of the Euler’s Method 
 
The key principle in Euler’s method is the use of a linear approximation for the tangent to the  
solution curve.  This is closely related to the concept of slope fields for differential equations. 
 
Given an initial value problem (i.e. we know the values of the starting point / initial conditions),  

d f ( , )
d
y t y
t
 ,   00 )( yty   

we start at (t0, y0) and take small steps along the t-axis, guided by the tangents to the slope field. 
This is illustrated in Figure 7.1 in which the “small step” is of value t  units. 
 
 

 

0

dGradient
d t t

y
t 



y1 – y0 

(t0 , y0) tΔ

tΔ

y2 – y1 

1

dGradient
d t t

y
t 



(t3 , y3) 

y3 – y2 
(t2 , y2) 

(t1 , y1) 

t 

y 

2

dGradient
d t t

y
t 


tΔ
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We calculate the value of the slope of the slope field at the point (t0, y0) denoted by
0

d
d t t

y
t 

first. 

We then draw a line segment with this slope extending from the point     (t0, y0) to the point (t1, 
y1), where 1 0t t t  .  We get 
 

   
0

1 0 1 0
0 0 1 0 0 0

1 0

d f , f ,
d t t

y y y yy t y y y t t y
t t t t

 
      

 
 

 
The value of y1 calculated here estimates the actual value of y1. 
 
We can repeat the procedure to find the estimate of y2 which is another t  interval away.  We 
calculate the value of the slope of the slope field at the point (t1, y1) and then draw a line segment  
with this slope extending from point (t1, y1) to the point     (t2, y2), where 2 1t t t  .  We get  
 

   2 1 2 1
1 1 2 1 1 1

12 1

d f , f ,
d t

y y y y y t y y y t t y
t t t t

 
      

 
 

 
We can continue in a similar fashion to find estimates of y at intervals of t  apart, or for a pre- 
determined value of t, i.e.  3 2 2 2f ,y y t t y   ,  4 3 3 3f ,y y t t y   , etc. 

 
Straight line segment joining (tn, yn) and (tn+1, yn+1) 

 
In general, if we choose a step size of tΔ , then nn ttt  1Δ .  Referring to Figure 7.2, suppose  
that the value of y at tn is known or already determined, we can find the value of y at the next  
time level (i.e. at tn+1) by assuming that the line joining (tn, yn) and  (tn+1, yn+1) has the same  
gradient as the line segment of the slope field at (tn, yn).  Thus, we have 

1

1

d f ( , )
d

n n
n n

n n

y y y t y
t t t





 


, 

 
which gives the relationship 
 

1 f ( , )n n n ny y t t y       
 
which is the result for the Euler’s method. 

t 

y 

Gradient ( , )n nf t y

(tn, yn) tΔ

yn+1 – yn 

(tn+1, yn+1) 
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We call t  the step size of the method.  Each computation of an estimate is termed an iteration, 
and the estimates found are called iterates.  The value of the step size will have an impact on 
the number of iterations required to reach the desired value of t.  We shall discuss this using  
Example 6.1.1. 
 
(The formula for Euler Method with step size h is given in MF26.)  
 
Example 6.1.1 
 
Consider the initial value problem 
  

    
d 2 1, (0) 1
d
y y y
t
   . ------- (1) 

 
Apply Euler’s method to obtain an approximation for y(1) using step sizes tΔ = 0.2 and tΔ =  
0.1.  Plot all intermediate approximations on a graph and compare them with the exact solution. 

 
Here f(t, y) = 12 y , so Euler’s method’s formula will take the form 
 

)12(Δ1  nnn ytyy  
 
When t = 0.2, and starting with t0 = 0, y0 = 1, the first three approximate values are 
 

 1 1 (0.2) 1.22(1) 1y     , 
 2 1.2 (0.2) 1.482(1.2) 1y     , 
 3 1.48 (0.2) 1.8722(1.48) 1y     . 

 
The rest of the iterations are represented in Table 1. 
 
Thus, using a step size of 0.2, the approximate value for   
y(1) = 3.1891. 
 
When tΔ = 0.1, and starting with t0 = 0, y0 = 1, the first three approximate values are 

 
 1 1 (0.1) 1.1,2(1) 1y      

  2 1.1 (0.1) 1.22,2(1.1) 1y      
  3 1.22 (0.1) 1.364.2(1.22) 1y      
 

The rest of the iterations are represented in Table 2. 
 

Thus, using a step size of 0.1, the approximate value for  
y(1) = 3.5959. 

 
(Notice that when we half the step size, we double the 
number of iterations required.) 

 
 

n tn yn, approx 
0 0 1 
1 0.2 1.2000 
2 0.4 1.4800 
3 0.6 1.8720 
4 0.8 2.4208 
5 1.0 3.1891 

n tn yn, approx 
0 0 1 
1 0.1 1.1000 
2 0.2 1.2200 
3 0.3 1.3640 
4 0.4 1.5368 
5 0.5 1.7442 
6 0.6 1.9930 
7 0.7 2.2916 
8 0.8 2.6499 
9 0.9 3.0799 

10 1.0 3.5959 

Table 1 

Table 2 
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The “variable separable” method can be used to solve (1) exactly. 
 

d 2 1
d
y y
t
         1 d 1 d

2 1
y t

y


         
1 ln 2 1
2

y t C          
2e 1
2

tBy 
  

 
When t = 0, y = 1, we get B = 1,  

 
2e 1
2

t

y 
  

 
Tables 3 and 4 show the values of the estimates compared with the actual values of y 
for both step sizes of 0.2 and 0.1 respectively.  The error between the estimated and 
actual value are also calculated where  

Absolute Error = , ,n actual n approxy y     and    Percentage Error = , ,

,

| |
100%n actual n approx

n actual

y y
y


  

n tn yn, approx yn, actual | yn, actual − yn, 

approx | 
Percentage 

Error 
0 0 1 1 0 0% 
1 0.2 1.2000 1.2459 0.0459 3.69% 
2 0.4 1.4800 1.6128 0.1328 8.23% 
3 0.6 1.8720 2.1601 0.2881 13.34% 
4 0.8 2.4208 2.9765 0.5557 18.67% 
5 1.0 3.1891 4.1945 1.0054 23.97% 

 
Table 3:  Calculation of errors involved when tΔ = 0.2 

 

n tn yn, approx yn, actual | yn, actual − yn, 

approx | 
Percentage 

Error 
0 0 1 1 0 0% 
1 0.1 1.1000 1.1107 0.0107 0.96% 
2 0.2 1.2200 1.2459 0.0259 2.08% 
3 0.3 1.3640 1.4111 0.0471 3.34% 
4 0.4 1.5368 1.6128 0.0760 4.71% 
5 0.5 1.7442 1.8591 0.1150 6.18% 
6 0.6 1.9930 2.1601 0.1671 7.73% 
7 0.7 2.2916 2.5276 0.2360 9.34% 
8 0.8 2.6499 2.9765 0.3266 10.97% 
9 0.9 3.0799 3.5248 0.4449 12.62% 

10 1.0 3.5959 4.1945 0.5987 14.27% 
 

Table 4:  Calculation of errors involved when tΔ = 0.1 
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The figure below shows what the approximations would look like, and how much they deviate 
from the actual graph on a slope-field diagram. 
 
 
 

 
 

Graphical Representation of Analytic vs Approximation Solutions 
 

 
From Table 3, we observe that the error in yn increases as n increases i.e. as tn gets further and  
further away form the starting point t0.  The same observation can be made from Table 4.   
 
Comparing the actual value of y(1) with the approximations obtained in Table 3 and Table 4,  
we realise that the approximation obtained with a step size of 0.1 is better than that obtained  
with a step size of 0.2.  This corresponds to a smaller absolute error value for the smaller step  
size of 0.1.  In general, as the step size used gets smaller, better approximations will be  
obtained.  However, we note that as the step size is decreased, the number of iterations (and  
hence computational time) will escalate.  There is thus a trade-off between accuracy and speed  
(or complexity) in deciding the step size to use. 
 
 
6.2 Use of Technology for the Euler’s Method 
 
In real-life uses of Euler’s method, hundreds of steps would be required as small step size  
would be used to improve accuracy.  This would result in the estimation of the solution using  
this method by hand prohibitive.  A computer programme will be useful in performing these  
tedious computations.  In this course, we will introduce two means of implementing the Euler’s  
method, one using Microsoft Excel, and the other using the TI-84+ Graphic Calculator. 

 
Using Microsoft Excel 
 
Basic knowledge of how to use equations in Excel will allow us to easily implement the Euler’s  
method. 

analytic solution 

approx. solutions 
tΔ = 0.2 

approx. solutions 
tΔ = 0.1 
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Using the TI-84+ Graphic Calculator 
 
The TI-84+ Graphic Calculator can be programmed to implement the Euler’s method.  The  
programming code (adapted from code developed by Dr. K.C. Ang) is provided below: 
   
Description:  
 
This program implements Euler’s method for the initial value problem,  

 d f ,
d
y t y
t
 ,   00 )( yty   

to obtain an estimate for the value of y at a user-defined value of t. 
 
Usage:   D = a real number representing step size 
   Y = a real number, initial value of y, ie., y(0) 
   T = a real number, value of t at which y(t) is to be approximated 
 
Instructions:  

(i) Enter Y1 = f(x, y) in the ‘Y=’ editor. (The variable x is used to substitute t.) 
(ii) Turn on Stat Plot 1, select scatter plot or line plot, and set XList to L1 and YList 

to L2. 
(iii) Create a new program by pressing PRGM and choosing NEW. 
(iv) Give the program a name (EULER) and key in the codes below. 

Codes Remarks 
:ClrAllLists ClrAllLists is in MEM 
:ClrHome ClrHome is in PRGM under I/O 
:Prompt D Prompt is in the PRGM under I/O 
:Prompt Y  
:Prompt T  

:0  X 
  is the STO> key; X is the X,T, 
,n key 

:X  L1(1)  
:Y  L2(1)  
:round(T/D)  N round is in MATH under NUM 
:For(I, 1, N) For is in PRGM under CTL  

:Y+D*Y1  Y Y1 is in VARS under Y-VARS, 
Function 

:X+D  X  
:Disp Y Disp is in PRGM under I/O 
:X  L1(I+1)  
:Y  L2(I+1)  
:End End is in PRGM under CTL 

:FnOff FnOff is in VARS under Y-VARS, 
On/Off 

:Pause Pause is in PRGM under CTL 
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:L1(1)  Xmin Xmin is in VARS under Windows 
:L1(N+1)  Xmax Xmax is in VARS under Windows 
:min(L2)  Ymin Ymin is in VARS under Windows 
:max(L2)  Ymax Ymax is in VARS under Windows 
:DispGraph DispGraph is in PRGM under I/O 

 
(v) End your editing by pressing QUIT . 

 
(iv) Use program by pressing PRGM and selecting the program you wish to run. 

 
With the computer programme, you can now achieve a higher degree of accuracy with less  
tedious computations by hand. 

 
Try running the programme for Example 7.1.1 where Δt = 0.1, and you should get the following  
screens: 
 

    
 
Note that you will NOT be able to use this programme in the examinations as re-setting your  
GC will clear the programme. 
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6.3 Improved Euler’s Method 
 
Euler’s method can be improved. The improved Euler’s method (also known as the Heun’s  
Method) works as follows: 
 
We first apply Euler’s method to find an approximation to the next y value and denote it as  

*
1ny .  We then apply Euler’s method again, but now we use a linear line segment whose slope  

is the average of  f ,n nt y  and  *
1 1f ,n nt y  .  That is, the ‘new’ line segment will have a  

gradient of    *
1 1

1 f , f ,
2 n n n nt y t y 
   .  This is illustrated in the figure below 

 

 
 

Illustration of improved Euler’s method 
 
As shown in the figure, a line with slope m1 = f (tn, yn) is first drawn from (tn, yn).  From this  
line, we first find an estimate *

1ny .  This is essentially Euler’s method.  We then compute m2  
= f (tn+1, y*

n+1), and then determine the average of m1 and m2.  We then apply Euler’s method  
again, but using this average value as the gradient of the straight line to be drawn from point  
(tn, yn) to obtain the actual estimate of 1ny  . 

 
Each evaluation of the improved Euler’s method consists of two steps: 
 

*
1 f ( , )n n n ny y t t y       

*
1 1

1
f ( , ) f ( , )

2
n n n n

n n
t y t yy y t  



 
     

 
  

 
(The formula for Improved Euler Method with step size h is given in MF26.)  

tn tn+1 
t 

solution curve 

Gradient = )(
2
1

21 mm   

Gradient = m1 = f (tn, yn) 

Gradient = m2 = f (tn+1, y*
n+1) 

Δt 

*
1ny 

1ny 

y

ny
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Example 6.3.1 (Revisiting 6.1.1) 
 
Consider again the initial value problem 
 

    
d 2 1, (0) 1
d
y y y
t
   . ------- (1) 

 
Apply the improved Euler’s method to obtain an approximation for y(1) using step sizes  

tΔ = 0.2 and tΔ = 0.1.  Compare with results obtained using Euler’s method. 
 
Solution: 
 
Here f(t , y) = 12 y , so improved Euler’s method’s formula will take the form 

*
1 (2 1)n n ny y t y       

*
1

1
(2 1) (2 1)

2
n n

n n
y yy y t 



   
     

 
 

 
Beginning with t0 = 0, y0 = 1, Δt = 0.2, the first two approximate values are 
 
  *

1 1 (0.2) 2(1) 1 1.2y       

1
[2(1) 1] [2(1.2) 1]1 (0.2) 1.24

2
y         

 

 *
2 1.24 (0.2) 2(1.24) 1 1.536y       

2
[2(1.24) 1] [2(1.536) 1]1.24 (0.2) 1.5952

2
y         

 

 
The rest of the iterations are represented in Table 5. 
 
Thus, using a step size of 0.2, the approximate value for y(1) = 4.0504. 
 
Beginning with t0 = 0, y0 = 1, Δt = 0.1, the first two approximate values are 
 

 *
1 1 (0.1) 2(1) 1 1.1y       

1
[2(1) 1] [2(1.1) 1]1 (0.1) 1.11

2
y         

 

 *
2 1.11 (0.1) 2(1.11) 1 1.232y       

2
[2(1.1100) 1] [2(1.232) 1]1.11 (0.1) 1.2442

2
y         

 

 
 The rest of the iterations are represented in Table 6. 
 

Thus, using a step size of 0.1, the approximate value for y(1) 
= 4.1523. 

n tn y*n yn, 

approx 
0 0.0 --- 1.0000 
1 0.2 1.2000 1.2400 
2 0.4 1.5360 1.5952 
3 0.6 2.0333 2.1209 
4 0.8 2.7693 2.8989 
5 1.0 3.8585 4.0504 

n tn y*n yn, 

approx 
0 0.0 --- 1.0000 
1 0.1 1.1000 1.1100 
2 0.2 1.2320 1.2442 
3 0.3 1.3930 1.4079 
4 0.4 1.5895 1.6077 
5 0.5 1.8292 1.8514 
6 0.6 2.1216 2.1487 
7 0.7 2.4784 2.5114 
8 0.8 2.9136 2.9539 
9 0.9 3.4446 3.4937 

10 1.0 4.0924 4.1523 

Table 5 

Table 6 
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Table 7 and Table 8 show the comparison of the estimated yn values and absolute error values 
obtained from the Euler’s and improved Euler’s method when Δt = 0.2 and Δt = 0.1 
respectively. 
 

n tn yn, approx yn, 

actual 
|yn, actual - yn, approx| 

(Euler) (iEuler) (Euler) (iEuler) 
0 0.0 1.0000 1.0000 1.0000 0.0000 0.0000 
1 0.2 1.2000 1.2400 1.2459 0.0459 0.0059 
2 0.4 1.4800 1.5952 1.6128 0.1328 0.0176 
3 0.6 1.8720 2.1209 2.1601 0.2881 0.0392 
4 0.8 2.4208 2.8989 2.9765 0.5557 0.0776 
5 1.0 3.1891 4.0504 4.1945 1.0054 0.1441 

 
Table 7:  Comparison of Euler’s and improved Euler’s Method when Δt = 0.2 

 

n tn yn, approx yn, actual 
|yn, actual - yn, approx| 

(Euler) (iEuler) (Euler) (iEuler) 
0 0.0 1.0000 1.0000 1.0000 0.0000 0.0000 
1 0.1 1.1000 1.1100 1.1107 0.0107 0.0007 
2 0.2 1.2200 1.2442 1.2459 0.0259 0.0017 
3 0.3 1.3640 1.4079 1.4111 0.0471 0.0031 
4 0.4 1.5368 1.6077 1.6128 0.0760 0.0051 
5 0.5 1.7442 1.8514 1.8591 0.1150 0.0078 
6 0.6 1.9930 2.1487 2.1601 0.1671 0.0114 
7 0.7 2.2916 2.5114 2.5276 0.2360 0.0162 
8 0.8 2.6499 2.9539 2.9765 0.3266 0.0227 
9 0.9 3.0799 3.4937 3.5248 0.4449 0.0311 

10 1.0 3.5959 4.1523 4.1945 0.5987 0.0422 
 

Table 8:  Comparison of Euler’s and improved Euler’s Method when Δt = 0.1 
 
From Table 7, it can be seen that the improved Euler’s method results in a better approximation 
to the actual value of y(1) when Δt = 0.2.  The absolute error is also much smaller.  A similar 
observation can be found in Table 8.  Clearly, the improved Euler’s method is superior to the 
Euler’s method. Once again, we note that the approximation improves with decreasing step 
size, whether the Euler’s or improved Euler’s method is used. 
 
Note that the improved Euler’s Method actually requires two evaluations of f at each step while 
the Euler’s method requires only one.  This is an important consideration as most of the 
computational time in each step is spent on calculating f, thus contributing significantly to the 
overall computing effort. 
 
Note: It is INCORRECT to compute all the values of *

1ny   first using the Euler’s method 
and then use these values to find all the values of 1ny  .  Can you see why? 
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Efficiency Analysis 
 
In the example discussed above, at Δt = 0.2, Euler’s method requires 5 evaluations of f to reach 
t = 1.0 while the improved Euler’s method requires 10 evaluations.  However, at Δt = 0.1, the 
Euler’s method also requires 10 evaluations of f to reach t = 1.0.  We can see from the tables 
that the improved Euler’s method with Δt = 0.2 yields a better set of results then the Euler’s 
method with Δt = 0.1 even though the same number of evaluations of f is involved.  Thus, the 
improved Euler’s method is clearly more efficient and gives significantly better results. 
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