ACJC 2023 H1 Math JC1 Promo Solutions

		-	
1	$(\ln x)^2 - \ln(ex^2) > 7$		
	$(\ln x)^2 - \ln e - \ln x^2 - 7 > 0$	Many students were not able to $\sin \pi i \sin \pi i \sin \pi i \sin \pi \sin \pi \sin \pi \sin \pi \sin \pi \sin $	
	$(\ln x)^2 - \ln e - 2\ln x - 7 > 0$	simplify $\inf(ex)$ as $\inf e + 2 \inf x$.	
	$(\ln x)^2 - 2\ln x - 8 > 0$	For those who did, majority of them	
	Let $u = \ln x$	wrote $-\ln(ex^2) = -\ln e + 2\ln x$	
	$(u)^2 - 2u - 8 > 0$	instead, resulting in wrong values of	
	(u-4)(u+2) > 0	roots.	
	u > 4 or $u < -2$		
	$\ln x > 4 \text{or} \ln x < -2$	The common misconception to solve $(u-4)(u+2) > 0$ is "splitting"	
	$x > e^4$ or $x < e^{-2}$	as $(u-4) > 0$ or $(u+2) > 0$.	
	Since $x > 0$ for lnx to be defined	Very few students can write $-\frac{-2}{2}$	
	Hence $x > e$ or $0 < x < e$	$0 < x < e^{-x}$ as part of the answer.	
2	Method 1		
	$5x^2 - 5x + 2 = 5(x^2 - x + \frac{2}{5})$	Most students use completing the	
	$= 5((x-\frac{1}{2})^2 - \left(\frac{1}{2}\right)^2 + \frac{2}{5})$	square to show that the expression is positive.	
	$= 5((x - \frac{1}{2})^2 + \frac{3}{20})$		
	$= 5(x - \frac{1}{2})^2 + \frac{3}{4} > 0$		
	Method 2		
	Discriminant of $5x^2 - 5x + 2 = 0$ is $5^2 - 4(5)(2) = -15 < 0$	A handful of them use discriminant	
	(1) Hence $y = 5x^2 - 5x + 2$ does not intersect the x-	but a few of them did $D > 0$ instead.	
	axis . Also since the coefficient of $x^2 > 0$, the curve		
	$y = 5x^2 - 5x + 2$ has a minimum point. Hence		
	$5x^2 - 5x + 2$ is positive for all real values of x.		
	$4x^{2} + (12k - 8)x - k(k + 2) = 0$		
	Discriminant = $(12k - 8)^2 + 4(4)(k^2 + 2k)$		
	$-144k^2 + 64 - 192k + 16k^2 + 32k$	Almost all students are able to begin with $D > 0$ in this part	
	$= 160k^2 - 160k + 64$		
	$=32(5k^2-5k+2)$	However, only a few students are	
	> 0 for all real values of k from above	values of k " as the final answer.	

3 a	$\ln\left(\frac{e^{-2x}}{\sqrt{2+5x}}\right) = \ln(e^{-2x}) - \frac{1}{2}\ln(2+5x)$	Quite well done.	
	$= -2x - \frac{1}{2}\ln(2+5x)$ $= -2 - \frac{1}{2}\ln(2+5x) = -2 - \frac{5}{5}$	A common error is to differentiate $\ln\left(\frac{e^{-2x}}{\sqrt{2+5x}}\right)$ directly, which lead to complicated wrong answers.	
	$dx \begin{bmatrix} 2x^{2} & 2x^{2} & 2x^{2} \\ 2x^{2} & 2x^{2} & 2x^{2} \\ = -2 - \frac{5}{4 + 10x}$ $A = -2, B = -5, C = 10$	Do note that product rule is not necessary in H1 Math syllabus.	
b	$\int_{\frac{2}{3}}^{k} \frac{6}{\sqrt{2+3x}} dx = 4$ $6 \left[\frac{(2+3x)^{1/2}}{\frac{1}{2}(3)} \right]_{\frac{2}{3}}^{k} = 4$ $\left[\sqrt{2+3x} \right]_{\frac{2}{3}}^{k} = 1$ $\sqrt{2+3k} - \sqrt{4} = 1$ $\sqrt{2+3k} = 3$ $k = \frac{7}{3}$	Majority were able to integrate. A handful of them could not obtain the answer due to careless mistakes.	
4i	x = 1	A common error was that the graph was truncated near $x = 1$. A handful of students wrote $y = 2$ as the horizontal asymptote as well. Most of the students did not realise that "exact" coordinates is needed.	

	Alternative method $\int_{0}^{k} (k^{2} - x^{2}) dx - \text{area of triangle}$ $= \left[k^{2}x - \frac{x^{3}}{3} \right]_{0}^{k} - \frac{1}{2} (k) (k^{2})$ $= \frac{2k^{3}}{3} - \frac{k^{3}}{2}$ $= \frac{k^{3}}{6}$	
61	$y = \frac{x^{2} + 12}{\sqrt{x}} = x^{\frac{3}{2}} + 12x^{-\frac{1}{2}}$ $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - 6x^{-\frac{3}{2}}$ Let $\frac{dy}{dx} = 0 \implies \frac{3}{2}x^{\frac{1}{2}} = \frac{6}{x^{\frac{3}{2}}}$ $\implies x^{\frac{1}{2}} \left(x^{\frac{3}{2}}\right) = 6\left(\frac{2}{3}\right)$ $\implies x^{2} = 4$ $\implies x = 2, -2(na)$ $\frac{\text{Alternative method:}}{\text{Sub } x = 2 \text{ into } \frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - 6x^{-\frac{3}{2}} = \frac{3}{2}\sqrt{2} - 6(2)^{-\frac{3}{2}} = 0$ $y = \frac{x^{2} + 12}{\sqrt{x}} = \frac{4 + 12}{\sqrt{2}} = \frac{16}{\sqrt{2}}$ Stationary point is $\left(2, \frac{16}{\sqrt{2}}\right)$	Pretty well done as most of the students are aware that the expression requires some simplification before differentiating. A handful of them made some errors with the indices rules thus not able to obtain the correct answers.

7i	$S = 2500 + \frac{-5000}{2+0.4t}$ $2+0.4t = 0 \Rightarrow t = -5$ When $S = 0$, $t = 0$ Horizontal asymptotes $S = 2500$ t Or Horizontal asymptote is $S = \frac{1000}{0.4} = 2500$	Majority of the students are aware that the horizontal asymptote is S = 2500. A handful of them labelled as y = 2500. A number of them did not realise that $t \ge 0$.
ii	$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{2000}{(2+0.4t)^2}$	Many students did not include the word "rate".
	When $t = 2$, $\frac{dS}{dt} = \frac{2000}{(2+0.4t)^2} = \frac{2000}{(2+0.8)^2} = 255$ (3 sf)	Many students mistaken that the value is meant for 2010 to 2012. In
	The sales of the company is changing at the rate of \$255000 per year in the year 2012 .	2012.
iii	In the long run the sales of the company increases and tends towards \$2 500 000.	Not many students use the similar phrasing.
iv	$\int_{0}^{4} \frac{1000t}{dt} dt = \int_{0}^{4} (2500 - \frac{5000}{dt}) dt$	
	$\int_{2}^{3} 2 + 0.4t = \int_{2}^{3} (2 + 0.4t)^{2}$ $= [2500t - \frac{5000}{0.4} \ln(2 + 0.4t)]_{2}^{4}$	A handful of them use G.C to integrate.
	$= [2500(4) - \frac{5000}{0.4} \ln(2 + 0.4(4))] - [2500(2) - \frac{5000}{0.4} \ln(2 + 0.4(2))]$	Students are not aware that "Find
	= $(2500(2) + 12500 \ln \frac{2.6}{3.6})$ = 1859 (to the nearest integer)	algebraically" means G.C is not allowed in solving.
	It represents the total sales in thousand dollars for the jewellery store from 2012 to 2014 .	

$$\begin{array}{c|c} \mathbf{V} & C = t^3 - 12t^2 + (k+36)t \\ \hline \frac{dC}{dt} = 3t^2 - 24t + (k+36) > 0 \text{ for all real } t \text{ since } x \text{ is an increasing function of } t \\ \hline \frac{\mathbf{Method 1}}{\mathbf{Method 2}} & \text{Discriminant} = (24)^2 - 4(3) \ (k+36) < 0 \Rightarrow k > 12 \\ \hline \frac{\mathbf{Method 2}}{3t^2 - 24t + k + 36} = 3\left(t^2 - 8t + \frac{k}{3} + 12\right) = 3\left((t-4)^2 - 16 + \frac{k}{3} + 12\right) > 0 \\ \text{for all real } t \text{ if } -16 + \frac{k}{3} + 12 > 0 \\ \Rightarrow \frac{k}{3} > 4 \\ \Rightarrow k > 12 \end{array}$$