

H2 Mathematics (9758) Chapter 7 Differentiation Discussion Solutions

Level 1

1 Differentiate the following with respect to the variable given:

(a)
$$\sqrt{x} \cot(\sqrt{x})$$
 (b) $z(\ln(z))^3$ (c) $\log_a (1-3x)^3$, where *a* is a positive constant and $a \neq 1$
(d) $\ln(\sin^2 \theta)$ (e) $3^{x} \sin x$ (f) $\frac{1}{\cos^{-1} 2x}$
(g) $\sin^3 x$ (h) $\sqrt{\csc(3x-\frac{1}{2})}$ (i) $\tan^{-1}(1-x^3)$

Solutions:

(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{x}\cot\left(\sqrt{x}\right)\right)$
	$=\frac{1}{2\sqrt{x}}\cot\left(\sqrt{x}\right)-\frac{1}{2\sqrt{x}}\cdot\sqrt{x}\csc^{2}\left(\sqrt{x}\right)$
	$=\frac{1}{2\sqrt{x}}\cot\left(\sqrt{x}\right)-\frac{1}{2}\csc^{2}\left(\sqrt{x}\right)$
(b)	$\frac{\mathrm{d}}{\mathrm{d}z} \Big(z \big(\ln(z) \big)^3 \Big)$
	$= z \left[3 \left(\ln(z) \right)^2 \times \frac{1}{z} \right] + \left(\ln(z) \right)^3$
	$= 3 \left(\ln(z) \right)^2 + \left(\ln(z) \right)^3$
	\bigotimes
	ALERT: $(\ln(z))^3 \neq 3\ln(z)$
(c)	First, we do a change of base for $\log_a (1-3x)^3$.
	$\log_a (1-3x)^3$ Always simplify ln expression
	$-\log_{e}(1-3x)^{3} - \ln(1-3x)^{3} - 3\ln(1-3x)^{4}$ before differentiating
	$\log_{e} a = \ln a$ $\ln a$ Note that a is a constant,
	$d(a = (a = a)^3)$
	$\frac{1}{\mathrm{d}x} \left(\log_a \left(1 - 3x \right)^{-} \right)$

	$=3\frac{d}{dx}\left(\frac{\ln(1-3x)}{\ln x}\right)$	
	$ax(\ln a)$	
	$=\frac{3}{\ln a}\cdot\frac{3}{1-3x}$	
	9	
	$=\frac{1}{(\ln a)(3x-1)}$	
(d)	$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\ln \left(\sin^2 \theta \right) \right)$	
	$=\frac{1}{\sin^2\theta}(2\sin\theta\cos\theta)$	
	$-2\cos\theta$	
	$=2\frac{1}{\sin\theta}$	
	$=2\cot\theta$	
(e)	Method 1: Using Implicit Different	tiation
	$3^{x \sin x}$	Note: The power is a variable in <i>x</i> , so we
	Let $y = 3^{x \sin x}$	will need to use implicit differentiation
	$\ln v = x \sin x \ln 3$	here.
	Differentiate wrt <i>x</i> ,	ALERT: You cannot do the usual way
	1 dy ()1 2	$\frac{d}{dx} \sin x \rightarrow x \sin x \sin x - 1$
	$\frac{-1}{y dx} = (x \cos x + \sin x) \ln 3$	$\frac{1}{dx} \left(\frac{3}{2} \right) \neq x \sin x \left(\frac{3}{2} \right)$
	dy (1 a)	
	$\frac{y}{dx} = y(\ln 3)(x\cos x + \sin x)$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3^{x\sin x} (\ln 3) \left(x\cos x + \sin x \right)$	Replace y by $3^{x \sin x}$
	Method 2: By memorising formula	Lecture Notes pg 4:
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(3^{x\sin x}\right) = 3^{x\sin x} (\ln 3) (x\cos x)$	$+\sin x$) $\left \frac{\mathrm{d}}{\mathrm{d}x} a^{\mathrm{f}(x)} = a^{\mathrm{f}(x)} \mathrm{f}'(x) (\ln a) \right $

(f)	$\frac{d}{d}$		ALERT:	
	$dx(\cos^{-1}2x)$		$\cos^{-1} r \neq \frac{1}{1}$	reginneesl of
	$=\frac{\mathrm{d}}{\mathrm{d}x}\left(\cos^{-1}2x\right)^{-1}$		$\cos x + \cos x$	cosine function
	$=-1\left(\cos^{-1}2x\right)^{-2}\times\left($	$-\frac{1}{\sqrt{1-(2x)^2}} \times 2$	inverse of cosine function	
	$-\frac{2(\cos^{-1}2x)^{-2}}{2}$		$\cos^{-1} 2x \neq \frac{1}{\cos 2x}$	
	$-\sqrt{1-(2x)^2}$		$\frac{1}{\cos^{-1}2x} \neq \cos 2x$	\bigotimes
	$=\frac{2}{\left(\cos^{-1}2x\right)^{2}\sqrt{1-(2x)^{2}}}$	$\overline{2x)^2}$		
	$=\frac{2}{\left(\cos^{-1}2x\right)^{2}\sqrt{1-4x}}$	$\overline{\mathbf{x}^2} \qquad \mathbf{MF26:} \\ \mathbf{f}(x) \\ \mathbf$		f'(x)
		$\cos^{-1} $		$\overline{Q_{1-x^2}}$
		Note		
		Since this question	n is to differentiate	$\cos^{-1} 2x$, remember
		to chain rule $2x$, i.	e. differentiate $2x$ to	9 get 2.
(g)	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin^3 x)$			
	$= 3\sin^2 x(\cos x)$			
(h)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{\mathrm{cosec} \left(3x - \frac{1}{2} \right)^2} \right)^2$	$\overline{)}$		
	$=\frac{1}{2}\left[\operatorname{cosec}\left(3x-\frac{1}{2}\right)\right]$	$\int_{-\infty}^{-\frac{1}{2}} \left(-\operatorname{cosec}\left(3x - \frac{1}{2}\right)\right)^{-\frac{1}{2}} \left(-\operatorname{cosec}\left(3x - \frac{1}{2}\right)^{-\frac{1}{2}}\right)^{-\frac{1}{2}} \left(-cose$	$\frac{1}{2}$ cot $\left(3x - \frac{1}{2}\right)$ (3)	
	$= -\frac{3}{2}\cot\left(3x - \frac{1}{2}\right)\sqrt{\frac{1}{2}}$	$\operatorname{cosec}\left(3x - \frac{1}{2}\right)$		
(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\tan^{-1}\left(1-x^3\right)\right)$			
	$=\frac{1}{1+(1-x^{3})^{2}}(-3x^{2})$)		
	$=\frac{-3x^2}{2-2x^3+x^6}$			

2 2004/I/14 modified

Find the *x*-coordinates of all the stationary points on the curve

$$y = \frac{x^3}{\left(x+a\right)^2}$$

where a > 1 and state, with reasons, the nature of each point.

Level 2

3 Prove that
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
, where $-\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$.
Let $y = \tan^{-1}x$ where $-\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$.
Differentiating with respect to x ,
 $\frac{d}{dx}(\tan y) = \frac{d}{dx}(x)$
 $\sec^2 y \frac{dy}{dx} = 1$
 $\frac{dy}{dx} = \frac{1}{\sec^2 y}$
 $\frac{dy}{dx} = \frac{1}{1+\tan^2 y}$
 $\frac{dy}{dx} = \frac{1}{1+x^2}$

4 2017(9758)/I/5

When the polynomial $x^3 + ax^2 + bx + c$ is divided by (x-1), (x-2) and (x-3), the remainders are 8, 12 and 25 respectively.

(i) Find the values of a, b and c. [4]

A curve has equation y = f(x), where $f(x) = x^3 + ax^2 + bx + c$, with the values of *a*, *b* and *c* found in part (i).

- (ii) Show that the gradient of the curve is always positive. Hence explain why the equation f(x) = 0 has only one real root and find this root. [3]
- (iii) Find the *x*-coordinates of the points where the tangent to the curve is parallel to the line y = 2x 3. [3]

Solutions

(ii)	$f(x) = x^3 - \frac{3}{2}x^2 + \frac{3}{2}x + 7$	
	$f'(x) = 3x^2 - 3x + \frac{3}{2} = 3\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} > 0 \text{ for all } x \in \mathbb{R}$	
	When trying to show that gradient is positive, you need to use algebraic method . Method 1: completing the square since $f'(x)$ is a quadratic	
	expression.	
	Method 2: Using Discriminant and coefficient of r^2 :	
	we mode 2. Using Discriminant and coefficient of x .	
	$D = (-3)^2 - 4(3) \left(\frac{3}{2}\right) = -9$ and coefficient of $x^2 = 3 > 0$, f'(x) > 0 for all $x \in \mathbb{R}$.	
	Therefore the gradient of the curve is always positive. (shown)	
	Since there are no turning points and $f(x)$ is a polynomial, the curve cuts the x-axi	S
	exactly once. Therefore $f(x) = 0$ has exactly one real root.	
	From GC, the root is -1.33 (3 s.f.).	
(iii)	When the tangent to the curve is parallel to the line $y = 2x - 3$.	
	Gradient of line is 2.]
	f'(x) = 2]
	$3x^2 - 3x + \frac{3}{2} = 2$	
	$3x^2 - 3x - \frac{1}{2} = 0$	
	Using GC, $x = 1.15$ or $-0.145 (3 \text{ s.f})$	

5 A curve is defined by the equation $x^3 + y^3 + 3xy = 1$. Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (2, -1).

Solutions $x^3 + y^3 + 3xy = 1$ Differentiate wrt x, Apply product rule $3x^{2} + 3y^{2}\frac{dy}{dx} + 3\left(x\frac{dy}{dx} + y\right) = 0$ (1) Sub. (2, -1) into (1), $3(2)^{2} + 3(-1)^{2} \frac{dy}{dx} + 3\left(2\frac{dy}{dx} - 1\right) = 0$ $9\frac{\mathrm{d}y}{\mathrm{d}x} = -9$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -1$ Differentiate (1) wrt x, $6x + 3y^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} \left(6y \frac{dy}{dx} \right) + 3 \left(x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} \right) = 0$ $6x + 3y^{2} \frac{d^{2}y}{dx^{2}} + 6y \left(\frac{dy}{dx}\right)^{2} + 3\left(x \frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx}\right) = 0$ (2)Sub. (2, -1) and $\frac{dy}{dx} = -1$ into (2), $6(2) + 3(-1)^2 \frac{d^2 y}{dx^2} + 6(-1)(-1)^2 + 3\left(2\frac{d^2 y}{dx^2} + 2(-1)\right) = 0$ $9\frac{d^2y}{dx^2} = 0$ $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 0$

6 2013/ACJC/II/3 (modified part)

A curve *C* has parametric equations

$$x = 2 + t + \frac{2}{t}, \quad y = 2 - t + \frac{2}{t}$$

where t < 0.

- (a) Find $\frac{dy}{dx}$ in terms of *t* and hence find the exact value of *t* for which the tangent to the curve at *t* is parallel to the *y*-axis. [4]
- (b) Find the value of *t* for which the distance from the point (1, 0) to the curve is the shortest possible. [2]

(c) By considering
$$(x-2)^2$$
 and $(y-2)^2$, find the Cartesian equation of *C*. [2]

It is given that

$$\mathbf{f}(x) = \frac{ax+b}{cx+d},$$

for non-zero constants a, b, c and d.

- (i) Given that $ad bc \neq 0$, show by differentiation that the graph of y = f(x) has no turning points. [3]
- (ii) What can be said about the graph of y = f(x) when ad bc = 0? [2]
- (iii) Deduce from part (i) that the graph of

$$y = \frac{3x - 7}{2x + 1}$$

has a positive gradient at all points of the graph.

[1]

	Alternative
	$f(x) = \frac{ax+b}{b}$
	cx + d
	$=\frac{a}{c}+\frac{b-\frac{ad}{c}}{c}$
	c cx+d
	$=\frac{a}{a}-\frac{ad-bc}{bc}$
	c c(cx+d)
	When $ad - bc = 0$, $f(x) = \frac{a}{c}$.
	The graph is a horizontal line with equation $y = \frac{a}{c}, x \neq -\frac{d}{c}$.
(iii)	$f(x) = \frac{3x-7}{2x+1}, a = 3, b = -7, c = 2, d = 1$
	ad - bc = (3)(1) - (-7)(2) = 17
	$f'(x) = \frac{ad - bc}{(cx + d)^2} = \frac{17}{(2x + 1)^2} > 0$ for all real values of x, $x \neq -\frac{1}{2}$
	$\therefore y = \frac{3x-7}{2x+1}$ has a positive gradient at all points of the graph.

The curve C has equation

$$x - y = \left(x + y\right)^2.$$

It is given that *C* has only one turning point.

(i) Show that
$$1 + \frac{dy}{dx} = \frac{2}{2x + 2y + 1}$$
. [4]

(ii) Hence, or otherwise, show that
$$\frac{d^2 y}{dx^2} = -\left(1 + \frac{dy}{dx}\right)^3$$
. [3]

(iii) Hence state, with a reason, whether the turning point is a maximum or minimum.

			[2]
8	Solutions		
(i)	$x - y = \left(x + y\right)^2$		
	Differentiate wrt <i>x</i> ,		
	$1 - \frac{\mathrm{d}y}{\mathrm{d}x} = 2\left(x + y\right)\left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right)$		
	$1 - \frac{\mathrm{d}y}{\mathrm{d}x} = 2(x+y) + 2(x+y)\frac{\mathrm{d}y}{\mathrm{d}x}$		
	$(2x+2y+1)\frac{dy}{dx} = 1-2x-2y$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1-2x-2y}{2x+2y+1}$		
	$LHS = 1 + \frac{dy}{dx}$		
	$=1 + \frac{1 - 2x - 2y}{2x + 2y + 1}$		
	$=\frac{1+2x+2y+1-2x-2y}{2x+2y+1}$		
	$=\frac{2}{2x+2y+1}$ = RHS (shown)		
	Alternative		
	$\overline{x - y = (x + y)^2}$		
	Differentiate wrt x,		
	$1 - \frac{\mathrm{d}y}{\mathrm{d}x} = 2\left(x + y\right)\left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right)$	Add 1 on both sides to create a dy	
	$1 = 2\left(x+y\right)\left(1+\frac{dy}{dx}\right) + \frac{dy}{dx}$	common factor $1 + \frac{dy}{dx}$	
	$1+1 = 2\left(x+y\right)\left(1+\frac{dy}{dx}\right) + \left(\frac{dy}{dx}+1\right)$	Factorise out common factor	
	$2 = \left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right) \left[2(x+y) + 1\right]$	$1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	
	$1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{2x + 2y + 1}$		

(ii)	$1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{2x + 2y + 1}$
	$1 + \frac{dy}{dx} = 2(2x + 2y + 1)^{-1}$ Differentiate wrt x, $\frac{d^2y}{dx^2} = (2)(-1)(2x + 2y + 1)^{-2}\left(2 + 2\frac{dy}{dx}\right)$ "Hence" mean use the result in part (i) to do implicit differentiation directly.
	$=\left[\frac{-2}{\left(2x+2y+1\right)^{2}}\right]\left(2\right)\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)$
	$= -\left(\frac{2}{2x+2y+1}\right)^2 \left(1+\frac{dy}{dx}\right)$ Replace $\frac{2}{2x+2y+1}$ by $1+\frac{dy}{dx}$
	$= -\left(1 + \frac{dy}{dx}\right)^{2} \left(1 + \frac{dy}{dx}\right)$ that is the result in part (i) to prove to the desired result.
	$=-\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{3}$ (shown)
(iii)	At turning point, $\frac{dy}{dx} = 0$
	$\frac{d^2 y}{dx^2} = -(1+0)^3 = -1$
	Since $\frac{d^2 y}{dx^2} < 0$, the turning point is a maximum point.

9 The diagram shows the graph of y = f'(x) on the interval $-3 \le x \le 7$.

State the *x*-coordinates of all the stationary points on the graph of y = f(x) for $-3 \le x \le 7$. Determine the nature of the stationary points.

Determine the set of values of x for which the graph of y = f(x) is

- (i) strictly increasing,
- (ii) strictly decreasing,
- (iii) concave upwards,

 $\{x \in \mathbb{R} : 2 < x < 5\}$

(iv)

(iv) concave downwards.

Solutions 9 Stationary points at x = -1, x = 3 and x = 6-1+ 3 -13-3+ -1^{-} х х 6 6 6^+ х dy dy dy dx dx dx At x = -1, it is a minimum At x = 3, it is a maximum At x = 6, it is a minimum point. point. point. Alternative Method (2nd Derivative Test) From graph, using 2nd derivative test, d^2y x = -1Min point >0 dx^2 x = 3 d^2y Max point < 0 dx^2 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ Min point x = 6>0 (i) $\{x \in \mathbb{R} : -1 \le x \le 3 \text{ or } 6 \le x \le 7\}$ $\{x \in \mathbb{R} : -3 \le x \le -1 \text{ or } 3 \le x \le 6\}$ (ii) (iii) $\{x \in \mathbb{R} : -3 < x < 2 \text{ or } 5 < x < 7\}$

Page 14 of 19

10 Sketch the graphs of the derivative functions for each of the functions whose graphs are shown below. (a) (b) y = 1 (c) y = g(x)

(1,-1)

Level 3

11 2015(9740)/I/11 [parts]-modified

A curve *C* has parametric equations

$$x = \sin^{3}\theta, \qquad y = 3\sin^{2}\theta\cos\theta, \qquad \text{for } 0 \le \theta \le \frac{1}{2}\pi.$$
(i) Show that $\frac{dy}{dx} = 2\cot\theta - \tan\theta$. [3]

(ii) Show that *C* has a stationary point when $\tan \theta = \sqrt{k}$, where *k* is an integer to be determined. Find, in non-trigonometric form, the exact coordinates of the stationary point. [5]

The line with equation y = ax, where *a* is a positive constant, meets *C* at the origin and at the point *P*.

(iii) Show that $\tan \theta = \frac{3}{a}$ at *P*. Find the exact value of *a* such that the line passes through the stationary point of *C*. [3]

Q11 Solutions

(i)	$x = \sin^3 \theta, \ y = 3\sin^2 \theta \cos \theta$
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin^2\theta\cos\theta$
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 3\left[2\sin\theta\cos\theta\cos\theta + \sin^2\theta\left(-\sin\theta\right)\right] = 3\left(2\sin\theta\cos^2\theta - \sin^3\theta\right)$
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\mathrm{d}\theta} = \frac{3(2\sin\theta\cos^2\theta - \sin^3\theta)}{\mathrm{d}\theta}$
	$dx dx 3\sin^2\theta\cos\theta$
	$\mathrm{d} heta$
	$2\cos^2\theta - \sin^2\theta$
	$-\frac{1}{\sin\theta\cos\theta}$
	$2\cos^2\theta$ $\sin^2\theta$
	$=\frac{1}{\sin\theta\cos\theta}-\frac{1}{\sin\theta\cos\theta}$
	$2\cos\theta \sin\theta$
	$=\frac{1}{\sin\theta}-\frac{1}{\cos\theta}$
	$= 2\cot\theta - \tan\theta$ (shown)

(ii) At stationary point, $\frac{dy}{dx} = 0$ $2\cot\theta - \tan\theta = 0$ $\frac{2}{\tan\theta} - \tan\theta = 0$ $2-\tan^2\theta=0$ $\tan^2 \theta = 2$ $\tan\theta = \pm\sqrt{2}$ $\tan \theta = \sqrt{2} \left(\because \tan \theta \text{ is positive as } 0 \le \theta \le \frac{\pi}{2} \right)$ (shown) $\therefore k = 2$ Since $\tan \theta = \sqrt{2}$ and $0 \le \theta \le \frac{\pi}{2}$ $\sqrt{3}$ $\sqrt{2}$ $\Rightarrow \cos\theta = \frac{1}{\sqrt{3}}$ and $\sin\theta = \sqrt{\frac{2}{3}}$ 1 Good strategy to learn if you want to $\therefore x = \left(\sin^3\theta\right) = \left(\sqrt{\frac{2}{3}}\right)^3 = \frac{2\sqrt{6}}{9},$ obtain $\cos\theta$ and $\sin\theta$ from $\tan\theta$, always draw a right angled triangle $y = 3\sin^2\theta\cos\theta = 3\left(\sqrt{\frac{2}{3}}\right)^2\left(\frac{1}{\sqrt{3}}\right) = \frac{2}{\sqrt{3}}$ and apply trigo ratio. \therefore The coordinates of the stationary point is $\left(\frac{2\sqrt{6}}{9}, \frac{2\sqrt{3}}{3}\right)$ Note: Question wanted exact coordinates in non-trigonometric $x = \sin^3 \theta$, $y = 3\sin^2 \theta \cos \theta$ ----- (1) \triangleleft Parametric equations (iii) Since y = ax ------ (2) Cartesian equation Substitute (1) into (2) : $3\sin^2\theta\cos\theta = a\left(\sin^3\theta\right)$ NOTE: To solve for the intersection point between (1) and (2), we $3\sin^2\theta\cos\theta = a(\sin^3\theta)$ always substitute the $\sin^2\theta(3\cos\theta - a\sin\theta) = 0$ parametric equations into the **Cartesian equation** and solve $\sin \theta = 0$ or $\frac{\sin \theta}{\cos \theta} = \frac{3}{a} \Rightarrow \tan \theta = \frac{3}{a}$ (shown) for the parameter θ first. (origin) Since $\tan \theta = \sqrt{2}$, $\therefore \sqrt{2} = \frac{3}{a}$ $a = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$

[3]

12 2016/MJC/I/9

It is given that

$$f(x) = \frac{x}{\sqrt{(1-x^2)}}$$
, where $-1 < x < 1$.

- (i) Show by differentiation that f is strictly increasing.
- (ii) Sketch the graph of y = f(x), stating the equations of any asymptotes and the coordinates of any points of intersection with the axes. [3]

The diagram below shows the graph of y = g(x), which is continuous and differentiable on (-1, 1). It has a minimum turning point at (0, 3).

(iii) It is given that w(x) = g(x)f(x), where -1 < x < 1. By finding w'(x) and using your earlier results in parts (i) and (ii), determine the number of stationary points on the graph of w. [4]

12	Solutions
(i)	$f(x) = \frac{x}{\sqrt{\left(1 - x^2\right)}}$
	$f'(x) = \frac{\sqrt{(1-x^2)} \cdot 1 - x \cdot \frac{1}{2} \cdot (1-x^2)^{-\frac{1}{2}} \cdot (-2x)}{(1-x^2)}$
	$=\frac{1}{\sqrt{(1-x^2)}} + \frac{x^2}{(x-2)^{\frac{3}{2}}}$
	$= \frac{1}{x^2} > 0 \left(\because -1 < x < 1, \because (1 - x^2)^{\frac{3}{2}} > 0 \right)$
	$(1-x^2)^{\frac{3}{2}}$ Since $f'(x) > 0$ for $1 < x < 1$ f is strictly increasing
	Since $1(x) > 0101 - 1 < x < 1$, 1 is surcely increasing.

