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National Junior College 

2016 – 2017 H2 Mathematics 

 

Topic 5: Differentiation and its Applications 
 

 

Key Questions to Answer: 
 

1. What does the derivative tell you about the behaviour of the graph ? 

- What does differentiation by first principles mean? 

- How do you differentiate polynomials by first principles? 

- What is the geometrical interpretation of f ( )x ? 

2. What are the meanings of 
d

d

y

x
 and 

d

d
)f (

x
x ? 

- Is 
d

d

y

x
 a fraction? 

- Does 
d

d

x

y
 exist? If it does, what does 

d

d

x

y
 mean? 

3. How do you differentiate the following functions 

- polynomial functions, 

- trigonometric functions, 

- exponential functions, 

- logarithmic functions,  

- as well as constant multiples, sums and differences of any combination of the above functions? 
 

4. What are the rules that are useful in differentiation and how do you use them? 
 

5. Under what circumstances would you need to use implicit differentiation, parametric 

differentiation or logarithmic differentiation? 

6. What does 
2

2

d

d

y

x
 mean? 

- Is this the same as 
d d

d d

y

x x

 
 
 

 or 

2
d

d

y

x

 
 
 

?  

7. How do you relate the concavity of the graph with the first and second derivative? 

- Is the graph of 
1

y
x

  an example of a graph that is concave upwards? Why or why not?  

8. How do you identify a local maximum or minimum on the graph? 

- What is the difference between a local and a global maximum/minimum? 

- What is the first derivative test?  

- What is the second derivative test? Why does it work? Does it work all the time? 

- When should you use the first derivative test instead of the second derivative test? 
 

9. How do you find the equation of the tangent? 

- What is the relationship between the gradient of the tangent and that of the normal? 

- How do you find the equation of the normal? 
 

10. What do you see in common between chain rule, implicit differentiation, parametric 

differentiation and connected rates of change? 
 

Note: This topic is a build-up from the basic calculus knowledge acquired under the O-level 

Additional Mathematics syllabus.  Knowledge of O-level calculus is assumed. 
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§1 Differentiation Techniques  

 

1.1 Differentiation by First Principles 

 

Recall that the gradient of a straight line is the rate of change of y with respect to x, i.e.  
 

change in  
.

change in  

y

x
 

 

For example, the line 2y x  has gradient 2, which means that every unit change in x results in 2 

units change in y or equivalently, the rate of change of y with respect to x is 2. 

 

For a curve, recall that the gradient is found by differentiation. For example, for the curve 2 ,y x  

d
2 .

d

y
x

x
  

 

Hence the gradients of the curve 2y x at x = – 2 and x = 1 are – 4 and 2 respectively. We can see 

that the gradient of a curve differs for different points on the curve. 

 

How do we find 
d

d

y

x
 in the first place?  

 

Recall that the gradient of a curve at a given point is equal to the gradient of the tangent to the 

curve at the same point, as seen from the graph below: 

 

 
 

To find the gradient of the tangent to the curve at a general point P(x, f(x)) on the curve 2 ,y x  

consider the following diagram (left): 

 

1

1

d
Gradient of 2.

d x

y
l

x 

   
2

2

d
Gradient of 4.

d x

y
l

x 

    
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Gradient of the chord 
2 2δ ( δ )

.
δ ( δ )

y x x x
PQ

x x x x

 
 

 
  

 

 As Q    P along the curve, i.e. δ 0x   

 the chord PQ    tangent at P  (see above diagram (right)) 
 

  gradient of the chord PQ    gradient of tangent at P. 

 

Therefore the gradient of tangent to the curve at P is given by 
 

δ 0

2 2

δ 0

2 2 2

δ 0

δ 0

d δ
lim

d δ

( δ )
lim

( δ )

2 δ (δ )
lim

δ

lim(2 δ )

2 .

x

x

x

x

y y

x x

x x x

x x x

x x x x x

x

x x

x











 


 

   


 



 

 

In general, we have the following definition. 

 

Definition 1.1.1 (Derivative of a Function) 

 

If f is a function, the gradient of the curve f ( )y x is defined to be 
 

δ 0

d f ( δ ) f ( )
f ( ) lim

d δx

y x x x
x

x x

 
   

 

if this limit exists.  We call this limit the derivative or the gradient function of f ( ).x   

 

The process of obtaining the derivative by finding 
δ 0

f ( δ ) f ( )
lim

δx

x x x

x

 
 is known as differentiation 

by first principles. 
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Example 1.1.2 

 

Find the gradient function of the following curves from first principles. 
 

(i) 
1

,y
x

   (ii) sin ,y x  (iii) e .xy   

 

Solution: 

 

(i) Using first principles, 

 

  

  

 

δ 0 δ 0

δ 0

δ 0

δ 0

2

1 1

f ( δ ) f ( ) δ
f ( ) lim lim

δ δ

δ
lim

δ δ

δ
lim

δ δ

1
lim

δ

1
.  

x x

x

x

x

x x x x x x
x

x x

x x x

x x x x

x

x x x x

x x x

x

 







   
          

 














 

 

 

(ii) Using first principles, 

 
δ 0 0

δ 0

δ 0 δ 0

sin δ sinf ( δ ) f ( )
f ( ) lim lim

δ δ

2 δ δ
2cos sin

2 2
lim

δ

δ
sin

δ 2
lim cos lim

δ2

2

cos .

x x

x

x x

x x xx x x
x

x x

x x x

x

x

x
x

x

x

 



 

  
  

   
   
   

  
           

     
    



 

 

 

(iii) Using first principles, 
 

 

δ

δ 0 δ 0

δ

δ 0

δ

δ 0

f ( δ ) f ( ) e e
f ( ) lim lim

δ δ

e e 1
lim

δ

e 1
e lim

δ

e .

x x x

x x

x x

x

x

x

x

x

x x x
x

x x

x

x



 





  
  

  






 

 

Note: 
δ 0

sin δ
lim 1.

δx

x

x
  

Note: 
δ 0

e
lim 1.

δ

1

x

x

x







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1.2 Differentiation of Functions using Standard Results 

 

The following basic derivatives and differentiation techniques are assumed knowledge from the 

‘O’-level syllabus: 

 

Basic Functions y  
d

d

y

x
 

Polynomials 

( n  ) 

nx  1nnx   

 
n

ax b   
1n

an ax b


  

Trigonometric 

Functions 

 sin f ( )x   f ( ) cos f ( )x x   

 cos f ( )x   f ( ) sin f ( )x x   

 tan f ( )x   2f ( ) sec f ( )x x   

 cosec f ( )x     f ( ) cosec f ( ) cot f ( )x x x    

 sec f ( )x     f ( ) sec f ( ) tan f ( )x x x    

 cot f ( )x   2f ( ) cosec f ( )x x   

Logarithmic and 

Exponential Functions 

 ln f ( )x  
 
f ( )

f ( )

x

x


 

f ( )e x  f ( )f ( ) e xx   

 

 

Chain Rule 

If f ( )y u  and f ( )u x , then 

d d d
.

d d d

y y u

x u x
   

Product Rule 

If y = uv where u, v are functions of x, then 

d d d
.

d d d

y u v
v u

x x x
   

Quotient Rule 

If 
u

y
v

  where u, v are functions of x and v is non-zero, then 

2

d d

d d d .
d

u v
v u

y x x

x v



  

 

 

Refer to Appendix B for ways to use your graphing calculator to  
 

 evaluate the derivative at a point, and  

 plot the graph of the derivative function without doing the actual differentiation. 
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The following are additional results for the A-levels. For proofs, refer to Appendix A: 
 

 y  
d

d

y

x
 

Inverse 

Trigonometric 

Functions 

1sin x  
2

1

1 x
, 1x   

 1sin f ( )x
 

 
2

f ( )

1 f ( )

x

x




,  f 1x   

1cos x  
2

1

1 x




, 1x   

 1cos f ( )x
 

 
2

f ( )

1 f ( )

x

x





,  f 1x   

1tan x  2

1

1 x
 

 1tan f ( )x
 

 
2

f ( )

1 f ( )

x

x




 

Logarithmic and 

Exponential Functions 

xa  lnxa a  

f ( )xa  
f ( )f ( ) lnxx a a    

 log f ( )a x  
f ( )

log e
f ( )

a

x

x


  

 

Relationship between 

d

d

y

x
 and 

d

d

x

y
 

d 1

dd

d

y

xx

y

 . However, 
d 1

dd

d

n

nn

n

y

xx

y

  in general. 

 

Example 1.2.1 
 

Find 
d

d

y

x
 if (a)   1sin 1 2 ,y x    (b)  1tan 1 ,

2

x
y   
  

 
  (c)  45 ,xy   

(d)  1 2cos 1 ,y x    (e)  4log 2 .y x     
 

Solution: 
 

(a)  

 
2 2

d 2 2
.

d 4 41 1 2

y

x x xx

 
 

 
 (b) 

 

1
2

2 2

2

d 2
.

d 4 81 1x

y

x x x
 

  
  

(c)   4d
4 5 ln 5.

d

xy

x
  (d) 

2 2 2 4

d 2 2
.

d 1 ( 1) 2 4

y x x

x x x x
   

  
  

(e)  4

d 1
log e.

d 2

y

x x



  

 Alternatively, convert to natural logarithm  

 before differentiating:  4

ln( 2)
log 2

ln 4

x
x


  .     
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1.3 Implicit Differentiation 

 

So far, we have dealt with functions that are mostly explicit (e.g. 3 3y x   and tany x ).  

However, the dependent variable y may not always be expressed in terms of the independent 

variable x explicitly (e.g. 2 35 3 0xy x y   ).   

In such cases, we will use the chain rule to find 
d

d

y

x
.  Such a process is known as implicit 

differentiation. 

 

 

Example 1.3.1 

 

Differentiate the following with respect to x. 

(i)  y,  (ii)  y2,  (iii)  xy, (iv)  
d

,
d

y

x
 (v)  

2
d

.
d

y

x

 
 
 

 

 

Solution: 

 

(i)   
dd

d
.

dx

y
y

x
  (ii)    2 2d d d d

2 .
d d d d

y y
y y y

x y x x
    

 

(iii)  
d d

.
d d

y
xy x y

x x
   (iv) 

2

2

d d d
.

d d d

y y

x x x

 
 

 
   

 

(v) 

2 2

2

d d d d
2 .

d d d d

y y y

x x x x

    
    

     

 

 

 

In general,  
 

 (a)   1d dd d

d
( ) ,

d d d

n nn y

y x

y
y y ny

x x

    where n is a rational number.  

 (b)    
d dd d

(f ( )) f ( ) .
d

f
d dd

y y
y y y

x xy x
   
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Example 1.3.2 
 

Find 
d

d

y

x
 in terms of x and y if (a)  2 3 ,x y xy   (b)  2 23 7 4 8 0,x y xy x      

 (c)  1cos ,y x y    (d)  1tan ( ).y y x    

 

Solution: 

(a) 2 3 .x y xy   

Differentiate implicitly w.r.t. x, we get 

 

2

2

d d
2 3

d d

d 2
.

d 3

y y
x y x y

x x

y x y

x x y

  






 

 

(b) 3x2 − 7y2 + 4xy − 8x = 0. 

Differentiate implicitly w.r.t. x, we get 

d d
6 14 4 4 8 0

d d

d 6 4 8 3 2 4
.

d 14 4 7 2

y y
x y x y

x x

y x y x y

x y x y x

 
     

 

   
 

 

 

 

(c) 1cos y x y   . 

Differentiate implicitly w.r.t. x, we get 

2

2

2

2

2

1 d d
1

d d1

1 d
1 1

d1

d 1

1d
1

1

1
.

1 1

y y

x xy

y

xy

y

x

y

y

y

   


 
   
  

 





 

 

 

Alternatively,  

 
1cos y x y    

cos( ).y x y    

 

Differentiate implicitly w.r.t. x, we get 

d d
sin( ) 1

d d

d sin( )
.

d 1 sin( )

y y
x y

x x

y x y

x x y

 
     

 

 
 

 

 

 

 

 (d)   1tan tan .y y x y y x      

            Differentiate implicitly w.r.t. x, 

 

 

 

 

2

2

2

2

d d
sec 1

d d

d
sec 1 1

d

d
tan 1

d

d
cot .

d

y y
y

x x

y
y

x

y
y

x

y
y

x

 

  

 

 

  

Note: 3 3 2d d d d
( ) ( ) 3 .

d d d d

y y
y y y

x y x x
    



National Junior College Mathematics Department 2016 

Differentiation and its Applications                                              Page 9 of 32 

 

Example 1.3.3 
 

Find 
d

d

y

x
 in terms of x and y if (a)  ,  0,xy x x   (b)   ln .

x
y x  

 

Solution: 
 

(a)  xy x  

 

 Taking “ln” on both sides, we get 

 ln lny x x  

Differentiate implicitly with respect 

 to x, we get 

 

   

1 d 1
(1) ln

d

d
1 ln 1 ln .

d

x

y
x x

y x x

y
y x x x

x

 
  

 

   

 

 

(b)  ln
x

y x  

 ln ln ln  y x x  

  Differentiate implicitly w.r.t. x,  

 

 

   

1 d 1 1
1 ln ln

d ln

d 1
ln ln

d ln

1
ln ln ln .

ln

x

y
x x

y x x x

y
y x

x x

x x
x

 
    

 

 
  

 

 
  

 

 

 

Note:  If the expression to be differentiated is defined explicitly, the derivative should be in explicit 

form as well. 

 

Note:  The process of taking “ln” on both sides before carrying out implicit differentiation is called 

logarithmic differentiation.  

 

 In general, logarithmic differentiation is useful for expressions of the form ,vu where both u 

and v are non-constant expressions of x and/or y. 
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1.4 Parametric Differentiation 

 

We have seen curves defined by a pair of parametric equations.  We shall look at how to evaluate 

the gradient function in such cases. 

 

Given a set of parametric equations: 
f ( )

g( )

x t

y t





,  we may evaluate 

d
f ( )

d

d
g ( ).

d

x
t

t

y
t

t





 


 

 

The gradient function can be found as:  

d

d d d g ( )d
.

dd d d f ( )

d

y

y y t tt

xx t x t

t

 
     

 
 
 

. 
d 1

Note:  
dd

d

x

tt

x

  

 

Note that the gradient function will also generally be in terms of the parameter t. 

 

 

 

Example 1.4.1 

 

Find the gradient function for the following curves defined parametrically. 
 

(a)  3x t , 2 ,y t t    (b)  x t , cos ,y t  (c)  2x t , 
1

.y t
t

   

 

Solution:  

(a) 
d

2 1
d

y
t

t
  , 2d

3
d

x
t

t
  

 
2 2

d

d 2 1 2 1d
.

dd 3 3 3

d

y

y tt

xx t t t

t

 
      
 
 
 

 

 

 

(b) 
1

2
d 1 1

d 2 2

x
t

t t



  , 
d

sin
d

y
t

t
   

 

d

d sind
2 sin .

1dd

d 2

y

y tt
t t

xx

t t

 
       
 
 
 

 

(c) 
2

d 1
1

d

y

t t
  , 

d
2

d

x
t

t
  

 
2
1 2

3

d

1d 1d
.

dd 2 2

d

t

y

y tt

xx t t

t

 
      
 
 
 
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Example 1.4.2 

 

It is given that sec tanx     and cosec cot .y     Show that  
 

1
2secx

x
   and 

1
2cosecy

y
  . 

 

Hence show that 
2

2

d 1

d 1

y y

x x


 


. 

 

Solution: 
 

 

 

2

2 2

2

1 1
sec tan

sec tan

sec tan 1

sec tan

sec tan 2sec tan 1

sec tan

2sec 2sec tan

sec tan

2sec sec tan

sec tan

2sec   (shown).

x
x

 
 

 

 

   

 

  

 

  

 



   


 




  
















 

 

 

 

2

2 2

2

1 1
cosec cot

cosec cot

cosec cot 1

cosec cot

cosec cot 2cosec cot 1

cosec cot

2cosec 2cosec cot

cosec cot

2cosec cosec cot

cosec cot

2cosec    (shown).

y
y

 
 

 

 

   

 

  

 

  

 



   


 




  
















 

 

 2d
cosec cot cosec cosec cot cosec

d

y
     


      . 

 2d
sec tan sec sec tan sec

d

x
     


    . 

 

 

 

2

2

1 1

cosec cot cosec 2d 1

1 1d sec tan sec 1

2

y y
yy y

x x
x x

x

  

  

 
        

  
 

 

   (shown). 
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§2 Geometrical Results of the Gradient Function 

 

2.1 Increasing and Decreasing Functions 

 

A function is said to be strictly increasing (resp. strictly decreasing) when the value of f ( )x  

increases (resp. decreases) as the value of x increases. Mathematically, we have: 

 

Definition 2.1.1 (Increasing and Decreasing Functions)  
 

A function f is said to be strictly increasing (resp. strictly decreasing) if a b implies that 

f ( ) f ( )a b  resp. f ( ) f ( ) .a b  

 

Examples:  (Strictly increasing functions) 3, .y x y x x    

 (Strictly decreasing function) 2 1.y x    

 

For differentiable functions that are neither strictly increasing nor strictly decreasing, we can still 

determine the interval (say I) such that the curve is upward or downward sloping on I. For 

example, consider the following graph of f ( )y x . 
 

 
 

Range of values 

of x, I 

Value of 

f ( )x  or 
d

d

y

x
 

Gradient of curve  

f ( )y x is 
On I, curve is… 

On I, function 

f is… 

x a  or x b  0  positive upward sloping strictly increasing 

a x b   0  negative 
downward 

sloping 
strictly decreasing 

  

Hence we can conclude that 
 

(a) If  f ( ) 0x     or  
d

0
d

y

x
  for all x in an interval I, then f is strictly increasing on I. 

 

(b) If  f ( ) 0x     or  
d

0
d

y

x
  for all x in an interval I, then f is strictly decreasing on I. 

• 

• 
f ( ) 0b   

f ( ) 0a   

f ( ) 0x   

f ( ) 0x   
f ( ) 0x   

f ( )y x  

y 

x 
a   b 
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2.2 Stationary Points 
 

Stationary points are points on the curve where 
d

f ( ) 0
d

y
x

x
  . 

 

 
 

There are 3 types of stationary points – local minimum, local maximum and stationary point of 

inflexion. 

 

From the above diagram,  A  is a local maximum point. 

 B  is a local minimum point. 

 1C and 2C  are stationary points of inflexion. 

 

A and B are called turning points, because the sign of the gradient to the curve changes at these 

points (either from negative to positive or vice versa), and hence the curve “turns” at these points.  

 

In general, we have the following definition: 

 

Definition 2.2.1  (Local maximum and minimum points) 
 

A point  , f ( )k k  lying on the curve f ( )y x is said to be a local maximum (resp. 

minimum) point if f ( )k is greatest (resp. least) value of f ( )x  in an immediate 

neighbourhood of k, i.e. for a small interval of values of x containing k. 

 

In the above definition, f ( )k  need not be the greatest (least) value of f ( )x  for all x in fD   and 

hence the word “local”. On the other hand, we look at all the values of f ( )x  in fD  to identify the 

global minimum/maximum point. 

 

WONDER 
 

Must the global minimum/maximum be a stationary point? 
 

Answer: No. 

WONDER 
 

Can a graph have no global minimum/maximum point? 
 

Answer: Yes. For instance, consider f( ) 2 , 0 1.x x x     

Note that 0 and 2 does not lie in the range of f.  
 

A 

B 

C1 

x 
c1 

b 

a 

c2 

C2 
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2.3 Determining the Nature of Stationary Points 
 

If a point is known to be stationary, we can use the following methods to determine if it is a local 

maximum, a local minimum or a stationary point of inflexion. 

 

First Derivative Test (Sign Test) 
 

Check the sign of 
d

d

y

x
 just before and just after a stationary point. The following table shows all 

possible outcomes. 
 

x a  a  a  b  b  b  1c  1c  
1c  

2c  2c  
2c  

Sign of 
d

d

y

x
 + 0 − − 0 + + 0 + − 0 − 

 

Shape of curve 

 

            

Nature MAXIMUM MINIMUM INFLEXION INFLEXION 

 

UNDERSTAND 
 

What values should you choose to test for the nature of stationary point at x = 2?  
 

Answer: To be safe, choose x = 1.99 and x = 2.01  

(or values that are even closer to x = 2). 

 

Second Derivative Test 
 

Check the sign of 
2

2

d

d

y

x
 at the stationary point. The following shows all possible outcomes.  

 

Sign of 
2

2

d

d

y

x
 at stationary point Negative Positive Zero 

Nature MAXIMUM MINIMUM Inconclusive! 

 

Notes: 
 

1. The choice of first / second derivative test depends on the equation of the given curve and the 

relative ease of doing each test. 

2. Note that some points of inflexion are non-stationary; hence please do not simply write “point 

of inflexion” but rather “stationary point of inflexion”. 

 

UNDERSTAND 
 

Why does the 2nd derivative test work? 
 

Answer: Refer to 1st derivative test and consider the gradient of f ( )y x . 

QUESTION 

Why does the 2nd derivative test fail when 
2

2

d

d
0

y

x
  at a stationary point? 

Answer: Consider and sketch the graphs of 4y x  and 4 ,y x    

which has a stationary point at x = 0. 
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2.4 Concavity / Curvature 

 

Recall that  
 

2

2

d d d d
rate of change of  with respect to ,

d d d d

y y y
x

x x x x

 
  

 
 

 

i.e. 
2

2

d

d

y

x
 is the gradient function for 

d
.

d

y

x
 Hence we have the following results: 

 

Concave downwards Concave upwards 

 

 

                                                   y = f(x) 

 

 

 

 

                    

                                                    

 

                                                     y = f(x) 

 

                       

As x increases, the gradient of the curve 

decreases, i.e. f '( )x  is decreasing.  

f '( )x  is decreasing f ''( ) 0x  . 

As x increases, the gradient of the curve 

increases, i.e. f '( )x  is increasing.  

f '( )x  is increasing f ''( ) 0x  . 

 

Therefore, if  f '' 0x   (resp.  f '' 0x  ) for all x in an interval I, then curve of y = f(x) concave 

downwards (resp. concave upwards) on I. 

 

 

Example 2.4.1 
 

Determine the concavity of y = f(x) 3 23 1x x    for  (a)   1,x   (b)   1.x    

 

Solution: 
 

f(x) 3 23 1x x       2f '( ) 3 6    and    f "( ) 6 6.x x x x x     
 

 (a)  1x  :   f " 6 6 0   x x    curve is concave upwards on (1,  ). 

 (b)  1x  :   f " 6 6 0   x x    curve is concave downwards on (, 1). 

 

 

y  

x

 O  

d
0

d

y

x
  

d
0

d

y

x
  

y  

x

 O  

d
0

d

y

x
  

d
0

d

y

x
  
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Example 2.4.2 

Determine the largest set of values of x for which the graph given below is: 

(i) strictly increasing, (ii) strictly decreasing,       (iii) concave upwards,    

(iv) concave downwards. 

 

 

 

 

 

 

 

 

 

 

Solution: 

 

(i) (0, 1) (1, ),  (ii) ( , 1) ( 1,0),     
 

(iii) ( 1, 1),  (iv) ( , 1) (1, ).   

1 1 0 

y 

x 

f ( )y x  



National Junior College Mathematics Department 2016 

Differentiation and its Applications                                              Page 17 of 32 

 

2.5 Graph of the Derivative Function,  f ( )y x    
 

Graph of 

f ( )y x  

Graph of  

f ( )y x  
Mathematical Verification 

Stationary 

points 

x-intercepts The x-intercepts of f ( )y x  occurs when 

f ( ) 0,x  i.e. at the same x-values for the 

stationary points on the curve  f ( )y x . 

Points of 

inflexion 

 

Turning points  

 

 

 

 

 

 

 

 
 

At a point of inflexion, the sign of 
2

2

d

d

y

x
changes 

from positive to negative (or vice versa), hence 

f ( )x changes from strictly increasing to strictly 

decreasing (or vice versa). This implies that 

f ( )y x has a turning point. 

 Gradient of 

f ( )y x   

is positive. 

 

 

 Gradient of 

f ( )y x   

is negative. 

 f ( )y x  is 

above the x-axis.  

[ f ( ) 0y x  ] 

 
 

 f ( )y x  is    

      below the  

x-axis. 

[ f ( ) 0y x  ] 

  
d

f ( ) 0  same as f ( ) 0
d

y x x
x

   . 

 

 

  
d

f ( ) 0 same as f ( ) 0
d

y x x
x

   . 

 f ( )y x  

has vertical 

asymptote 

x a . 

 

 f ( )y x  

has 

horizontal 

asymptote 

y b . 

 

 f ( )y x  

has oblique 

asymptote 

y mx c  .  

 f ( )y x  has 

vertical 

asymptote x a . 

 

 

 f ( )y x  has 

horizontal 

asymptote 0y  . 

 

 

 

 f ( )y x  tends 

to m. 

 Vertical asymptote(s) implies that the limiting 

value of f ( )x  is infinite and undefined. 

 

 

 

 As the curve approaches a horizontal 

asymptote, the gradient of the curve gradually 

reduces to zero. 

 
 

 

 

 As the curve approaches an oblique asymptote, 

the gradient of the curve gradually tends to m. 

 
2

2

d d
f ( ) 0

d d

y
x

x x
    

 
2

2

d d
f ( ) 0

d d

y
x

x x
    

f ( )y x  
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CHECK 
 

Will the axial intercepts in the graph of f ( )y x  remain in the graph of 

f ( )y x ? 
 

Answer: Generally not. (One exception is when a stationary point  

is also an x-intercept). Can you think of any other exception(s)?  

 

 

Example 2.5.1 

 

The following is a sketch of the curves f ( )y x and g( ).y x   Sketch, on separate diagrams, the 

graphs of f ( )y x  and g ( ).y x  

 

Solution:  

 

y 

x 
−2 

g( )y x

2 

x 

y 

−2 

x 

y 

f ( )y x

2 −2 O 

( 1,1)  

(1, 1.5)  

x 

y 

f ( )y x

1 1  

2x  

2x  

2
3 g ( )y x

 82
3 3
,

O 

O O 
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§3 Tangents and Normals 

 

3.1 Equations of the Tangent and the Normal of a Curve at a Point (a, b) 

 

From the ‘O’-level syllabus, we have the following: 

 

For a given point (a, b) on a curve f ( ),y x  

 

 

 

 

 

 

 

 

Example 3.1.1 

 

The normal to the curve 2( 1)y x   at the point (2,1)P  cuts the curve at another point Q.  
 

(i) Find the equation of the normal. 

(ii) Obtain the coordinates of the point Q. 

 

Solution: 

 

(i) 
d

2( 1).
d

y
x

x
   

 

At (2,1)P , gradient of curve = 2(2 – 1) = 2. Thus gradient of normal at P = 
1

2
 . 

Equation of normal: 
1

1 ( 2)
2

y x    2 4y x    

 

(ii) When the normal cuts the curve again, 2(4 )
( 1)

2

x
x


  2 3

1 0
2

x x     

      
1

( 2) 0.
2

x x
 

    
 

 

Thus 2x   or 
1

.
2

x    

Therefore x-coordinate of the point Q is 
1

2
 . ( 2x   corresponds to P) 

Substituting 
1

2
x    into the equation of the curve, we get 

2
1 9

1
2 4

y
 

    
 

. 

Thus, coordinates of Q is 
1 9

,
2 4

 
 
 

. 

Equation of tangent f ( )( )y b a x a    

Equation of normal y  b = 
1

f ( )a




(x  a) 

b 

y 

O x 
a 

Gradient of tangent = f ( )a  

 

f ( )y x

 

1
Gradient of normal = 

f ( )a




 



National Junior College Mathematics Department 2016 

Differentiation and its Applications                                              Page 20 of 32 

 

Example 3.1.2 

Find the euatqions of the tangents to the curve 

3
1

1
2

y x
 

  
 

which are parallel to the line 

3
5

2
y x  . 

 

Solution: 
 

2
d 1 1

3 1 .
d 2 2

y
x

x

 
   

 
 

Gradient of tangents = 
3

2
 

2
3 1 3

1
2 2 2

x
 

   
 

 

 

2
1

1 1
2

1
1 1

2

0 or 4.

x

x

x

 
   

 

   

 

 

 

When x = 0, y = −1. 

 

Equation of tangent at (0, −1) is  

 
3

1 ( 0)
2

3
1.

2

y x

y x

   

 

 

 

 

When x = 4, y = 1. 

 

Equation of tangent at (4, 1) is  

3
1 ( 4)

2

3
5.

2

y x

y x

  

 
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Note that the results hold even if the curve f ( )y x is defined parametrically or implicitly, which 

we will observe in the following examples. 

 

 

Example 3.1.3  (Involves Implicit Differentiation) 
 

Find the equation of the tangent to the curve 3 2 22 3 3 0y xy x     at the point (2 ,3). 

 

Solution: 
 

 Differentiating implicitly w.r.t. x, we get 
2

2 2

2

d d d 2 6
3 4 2 6 0 .

d d d 3 4

y y y y x
y xy y x

x x x y xy


     


 

 

 When x = 2, y = 3, 
2

2

d 2(3) 6(2)
2.

d 3(3) 4(2)(3)

y

x


 


 

 

 Equation of tangent is 3 2( 2) 2 1.y x y x       

 

 

 

Example 3.1.4 (Involves Implicit Differentiation) 
 

Given that 2 22 2 4x xy y   , find an expression for 
d

d

y

x
 in terms of x and y.  Hence find the 

coordinates of each point on the curve at which the tangent is parallel to the x-axis. 

 

Solution: 
 

 2 22 2 4x xy y    --- (1) 

 

 Differentiating implicitly w.r.t. x, we get   

 

d d d 2 2
2 2 2 4 0 .

d d d 4 2 2

y y y y x y x
x x y y

x x x y x y x

 
      

 
 

 

 For tangent to the parallel to the x-axis, 
d

0
d

y
y x

x
     --- (2) 

 

 Substitute (2) into (1), we get 
 

2 2 2

2

2 2 4

4

2 or 2

2 or 2

y y y

y

y y

x x

  



  

  

 

 

 Required coordinates are (2, 2) and (−2, −2). 
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Example 3.1.5  (Involves Parametric Differentiation) 

 

Find the equations of the tangents and normals to the curve defined parametrically as 

  
3 21,y t x t    

 

at the points where the curve cuts the line x = 4. 

 

Solution: 

 

3 2

2

d
1 3

d

d
2

d

y
y t t

t

x
x t t

t

   

  

             
2

d

d d d 3 3d
.

dd d d 2 2

d

y

y y t tt
t

xx t x t

t

 
 
    
 
 
 

. 

 

 

When x = 4,    2t      or   2t   

 

Thus,     7y      or   9y   

 

And    
d

3
d

y

x
    or   

d
3

d

y

x
  

 

Equation of tangents: 

        7 3( 4)y x      or        9 3( 4)y x    

        3 5y x     or        3 3y x   

 

Equation of normals: 

        
1

7 ( 4)
3

y x     or        
1

9 ( 4)
3

y x     

        
1 25

3 3
y x    or        

1 31

3 3
y x   . 
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Example 3.1.6 (Involves Parametric Differentiation) 

 

A curve is defined parametrically as  
 

22 ,   1x t y t    . 
 

Show that the normal to the curve at the point with parameter t has equation  
 

32 2 2x ty t t    . 
 

The normal at the point T, where 2t   cuts the curve again at the point P, where t p .  Show that 
24 18 0p p    and hence deduce the coordinates of P. 

 

Solution: 

2 d
1 2

d

d
2 1

d

y
y t t

t

x
x t

t

    

   

         

d

d d d 2d
. 2 .

dd d d 1

d

y

y y t tt
t

xx t x

t

 
       
 
 
 

 

 

 

Equation of normal at point with parameter t: 
 

2

3

3

1
(1 ) ( (2 ))

2

     2 2 2 2

2 2 2     (shown).

y t x t
t

ty t t x t

t t x ty

    

    

   

 

 

Equation of normal when t = 2,  
 

32(2) (2) 2 2(2)

16 4      ---     (1)

x y

x y

   

 
 

 

When t = p, 21y p   and 2x p  . 

 

Substitute into (1), we get 
 

2

2

16 2 4(1 )

4 18 0 (shown).

p p

p p

   

  
 

 

Solving, we obtain  (4 9)( 2) 0p p   . 

 

Thus,     
9

2 (point )  or   (point )
4

p T p P   . 

 

Coordinates of P is 
1 65

,
4 16

 
  
 

. 
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§4 Practical Problems involving Differentiation 

 

4.1 Maxima & Minima 

 

We can apply differentiation to maximise or minimise a quantity given some restrictions / 

limitations. 

 

For example, a farmer wishes to find out how to enclose a rectangular piece of land with his fixed 

amount of fencing, say, 1000 m on all sides of the rectangle (restriction).  How would you advise 

him to obtain the largest area (quantity) for his herd to graze the land? 

 

Such problems exist in the real world especially in the fields of economics, sciences and 

manufacturing sectors as we always try to minimise cost and/or maximise profit. 

 

 

Example 4.1.1 (Function of a single variable) 

 

Triangle ABC has a right angle at C.  The shape of the triangle can vary but the sides BC and CA 

have a fixed total length of 10 cm.  Find the maximum area of the triangle. 

 

Solution: 

 

Step 1:  Express the quantity to be maximised as a function of one variable. 

 

 Let side BC be x, hence side 10CA x  . 

 

 Therefore area (P) of right-angle triangle is  

   
21

10 5 .
2 2

x
P x x x     

 

 

Step 2:  Differentiate w.r.t. the variable. 
 

 
d

5 .
d

P
x

x
   

 

 

Step 3:  Find stationary value(s) of the variable. 
 

 For stationary values,   
d

0
d

P

x
  5 0 5.x x      

 

 When 25cm,  12.5cmx P  . 

 

 

Step 4:  Check whether stationary value gives a maximum. 
 

 Using the 2nd derivative test, we get  
2

2

d
1 0

d

P

x
   . 

 Hence the triangle has a maximum area of 212.5cm  when x  is 5 cm. 

A 

B C 
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Example 4.1.2  (Function of 2 variables) 

 

A closed cylindrical can has height h and base radius r and its volume is 0.01 cubic units. Show that 

the surface area S is given by 2 1
2π

50
S r

r
  .  Hence find the value of r for which S is a minimum. 

 

Solution: 

 
22π 2πS r rh   --- (1) 

 

We can see that S is a function of 2 variables, r and h. 

We now use V = 0.01 units3 to remove the variable h. 

 

2

2 2

1
π

π 100π

V
V r h h

r r
    . 

 

Substituting h = 
2

1

100πr
 in (1), we get  

 

2

2

2

1
2π 2π

100π

1
2π  (shown).

50

S r r
r

S r
r

 

 

 

 

To minimise S, we consider  

2

d 1
4π .

d 50

S
r

r r
   

 

For stationary values of S,  

2 3

d 1 1
4π 0 .

d 50 200π

S
r r

r r
      

 

Using the second derivative test,  
2

2 3

d 1
4π 0 (since 0).

d 25

S
r

r r
     

 

Thus, S is minimum when 
3

1

200π
r  . 

 

r 

h 
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Example 4.1.3 

 

An opened rectangular tank of capacity 1203 cm3 is to be constructed using materials of negligible 

thickness.  The length of the tank is to be three times its breadth (which is denoted as x cm).  If the 

material needed for making the tank is denoted as A cm2 , show that  

 

A = 23208
3x

x
 . 

Find the value of x for which A will be a minimum. 

 

Solution: 

 

Let h cm be height of the tank. 

 

2 2

1203 401

3
h

x x
  . 

 

2

2 2

401 401 3208
3 ( ) 3 (2) (2) 3A x x x x x

x x x

   
       

   
   (shown).  

 

2

2

d 3208
6

d

3208
6 0

8.12.

A
x

x x

x
x

x

 

  

 

 

 

Using the second derivative test,  
 

2

2 3

d 6416
6 0 since 0

d

A
x

x x
    . 

 

Therefore 2min 592.9 cm .A   

 

 

3x 
x 
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4.2 Connected Rates of Change 
 

In this section, we consider problems involving the rates of change for two related variables.  

 

For example, if the area of a metal frame, say A, is related to the temperature of the metal frame, x, 

by f ( ),A x how can we find the rate of change of A at a certain time t, given the value of x and the 

rate of change of x at time t? 

 

To solve such problems, 
 

(i) Determine the rate of change to be found: 
d

d

A

t
. 

(ii) Identify what you are given: 
d

d

x

t
. 

(iii) By the Chain rule, we know that the given rate of change and the rate of change to be found are 

related by the identity 

d d d

d d d

A A x

t x t
  . 

Hence we need to find 
d

f ( )
d

A
x

x
  at the value of x at time t and find 

d

d

A

t
using the above relation. 

 

 

Example 4.2.1 
 

[The volume and the surface area of a sphere with radius r are 34
π

3
V r  and 24πA r  

respectively.] 

 

A spherical balloon is being inflated, and at the instant when its radius is 10 cm, its surface area is 

increasing at a rate of 6.4 cm2 s–1.  

Find the rate of increase, at the same instant, of   (i)   the radius,   (ii) the volume.                                                                   

 

Solution: 

 

(i) 2 2 1d
4π , 6.4 cm s

d

A
A r

t

   

 
 

1

d d d d
Since 8π  and ,

d d d d

d

d 6.4d   (when 10)
dd 8π 10

d

0.0255 cm s (to 3 s.f.)

A A A r
r

r t r t

A

r t r
At

r


  

  



 

 

(ii) 34
π

3
V r  

 

   

2

2

3 1

d
4π .

d

When 10,

d d d
4π 10 0.025465

d d d

32 cm s .

V
r

r

r

V V r

t r t






   


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Example 4.2.2 

 

A ladder 5 m long is leaning against a vertical wall.  The bottom of the ladder is pulled away along 

the ground from the wall at a constant rate of 10.4 ms . How quickly will the top of the ladder be 

falling when the bottom of the ladder is 3 m from the wall? 

 

Solution:  

 
2 2 225 25 .h x h x      

 

 2

2

d d d

d d d

d
25 (0.4)

d

0.4.
25

h h x

t x t

x
x

x

x

 

   
 


 



 

   

When x = 3 m, 
  1

2

3 0.4d 1.2
0.3 ms .

d 1625 3

h

t


 

    


  

 

The top of the ladder will be falling at a rate of 10.3 ms . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

h 5 
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Appendix A: Proofs of Results on Differentiation in Section 1.2 (Page 6) 

 

1.  1

2

d 1
sin ,

d 1
x

x x

 


1x  . 

 

Proof: Let 1sin .y x  Note that for 1sin x  to be defined, 1x  . Then sin .y x  
 

 Differentiating implicitly w.r.t. x,
d d 1

cos 1 .  (1)
d d cos

y y
y

x x y
     

 

 Since 2 2sin cos 1,y y   2 2 2 2cos 1 sin  cos 1 sin 1 .  (2)y y y y x         
 

 Substituting (2) into (1), 
2

d 1 1
,

d cos 1

y

x y x
 


1x   (shown). 

 

QUESTION 
 

In (2), why do we consider only the positive square root 21 x  and not the 

negative square root 21 x  ? 
 

Answer: The range of principal values of 1siny x  is .
2 2

y
 

    

This means that cos y  is non-negative.    

 

The proof for  1

2

d 1
cos ,

d 1
x

x x

  


1x   is similar, and is left as an exercise. 

 

 

2.  1

2

d 1
tan

d 1
x

x x

 


. 

 

Proof:   Let 1tan .y x  Then tan .y x  
 

 Differentiating implicitly w.r.t. x, 2 d
sec 1

d

y
y

x
 . 

 

 
2 2 2

d 1 1 1
 (shown).

d sec 1 tan 1

y

x y y x
  

 
 

 

 

3.  
d

ln
d

x xa a a
x

  

 

Proof:     ln lnd d
e e ln ln

d d

x x a x a xa a a a
x x

     (shown). 

 

 Note that lnex x aa   for any positive rational number a. 
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4.  
d 1

log log e
d

a ax
x x

  . 

 

Proof:  
d d ln

log  (by Change of Base Law for logarithms)
d d ln

a

x
x

x x a

 
  

 
 

  

 
1 d

ln
ln d

log e 1
 (by Change of Base Law for logarithms)

log

1
log e.

a

a

a

x
a x

a x

x



 

 

 

 

For results 1 to 4 above, the variants of the results (by replacing x with f ( )x ) follow from the Chain 

Rule. For example, if we let y = f ( )x , then 
 

   

 

 

 

1 1

1

2

2

d d
sin f ( ) sin

d d

d d
sin

d d

1 d
f ( )

d1

f ( )
.

1 f ( )

x y
x x

y
y

y x

x
xy

x

x

 





 

 







 

 

 

5. 
d 1

dd

d

y

xx

y

 . 

 

Proof:  Note that 
d

( ) 1.
d

x
x

  

 

 By treating x as a function of y and differentiating implicitly w.r.t. x, we have 

 

d d d d
( ) 1 1

d d d d

d d
                     1

d d

d 1
                      (shown).

dd

d

y x y
x

y x y x

x y

y x

y

xx

y

    

  

 
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Appendix B: Use of GC involving derivatives 

 

The graphing calculator can be used to determine the numerical derivative at a point on the curve. 

The tables below show two methods to obtain the gradient of 2y x  at 1x  . 
 

Method 1 
 

Steps Screenshot 

 

Make sure you are at the home screen. 

Press  . 

 
 

Press . 

Then press . 

 

The numerical value of the derivative of the function 

will appear on the next line. 
 

 

Method 2 
 

Steps Screenshot 

 

Sketch the graph of the function you are interested in. 

For example, 2

1Y X  . 

Press . 

Look for [6: dy/dx] 

Press  

  

 

If you are interested in the value of 
1

d

d x

y

x 

, 

press  in the next screen.  

Then press . 

 

The value of 
1

d

d x

y

x 

 is 2.  
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Suppose that we are given the equation f ( ).y x  The graphing calculator can be used to show the 

graph of the derivative function f '( )y x  without actually doing differentiation to find f '( )x . As an 

illustration, consider 
 

3 21 1
f ( ) 3 1, .

6 4
x x x x x      

 

Steps Screenshot 

Enter the function 3 2

1

1 1
Y 3 1

6 4
x x x     in your GC. 

 

At 2Y  enter the derivative function by pressing  

 
 

You may want to distinguish the two graphs by 

adjusting the thickness of the curves. (Scroll to the left 

until the cursor reaches the “slanted line” besides the 

function and hit ENTER repeatedly.) 
 

 

 

 

Graph the two functions. 

 

 

 

 

 

 


