Que	stions	\$	Answers	Marks
1	(a)		Repeated readings with error of different magnitude and sign . OR Repeated readings with scatter of readings about a mean	B1
			By plotting a graph and drawing a line of best fit for the points/can be reduced by averaging	B1
	(b)		Units of $\frac{kr^{3}(p_{1}-p_{2})}{l}\sqrt{\frac{M}{RT}} = \frac{m^{3}Pa}{m}\sqrt{\frac{kg \ mol^{-1}}{J \ K^{-1} \ mol^{-1}K}}$	
			$= kgms^{-2}\sqrt{\frac{kg s^2}{kgm^2}}$ $= kgs^{-1}$	
	(c)	(i)	Density = m/V m = density x V = density x $\pi(D^2 / 4)$ L = (8.96) x $\pi(6.0^2 / 4)$ L = 7093.46 g = 7.09346 kg	M1
			$\Delta m/m = 2\Delta D/D + \Delta L/L = (2(0.1)/(6.0) + (0.1/28.0) = 0.0369$	M1
			$\Delta m = m(2\Delta D/D + \Delta L/L) = (7093.46)(0.0369) = 0.262 \text{ kg}$	A1
			7.1 +/- 0.3 kg (Correct s.f.)	A1
		(ii)	Same measurements, but smaller absolute uncertainties, so percentage uncertainty is smaller	B1

Que	stions	\$ Answers	Marks
2	(a)	apply equation of motion $v = u + at$ vertically, we get $-5 = +5 - 9.81t$	
		for substitution	M1
		<i>t</i> = 1.019 s	
		for intermediate value	
			A1
	(b)	$\frac{20}{1.019} = 19.62 \text{ m s}^{-1}$	B1
		1.019	
		Alternative,	
		Using $v_y = u_0 + at$ and substituting $t = \frac{x}{v_x}$,	
		we get $v_y = u_0 - g \frac{1}{v_x} x$.	
		So 1. 981	
		gradient = $-\frac{1}{2} = -\frac{5.01}{v_x}$	

3	(a)		The moment of a force is equal to the <u>product of the force and the</u> <u>perpendicular distance</u> of the line of action of the force <u>from the</u> <u>pivot</u> . It is the turning effect of a force.	B1
	(b)	(i)	Fy support cable f y cable f y cable	

Take moments about the hinge, $(400)(\frac{L}{2}\sin 60) + 2000(L\sin 60) = T\sin 30(L)$	B1 C1
<i>T</i> = 3810 N	A1

\sim	4
	ILDETIONE
<u> </u>	ucsuons

Answers

4	(a)	kinetic energy was converted to <u>gravitational</u> potential energy and work done against frictional force.	B1
	(b)	$\frac{1}{2}mv^2 = mg\Delta h + work \ done \ against \ friction$	M1
		$\Delta h = 150 \sin 0.57^{\circ} = 1.492 \text{ m}$	C1
		work done against friction = $\frac{10^2}{2}m - 9.81 \times 1.492m = 35.36m$	M1
		proportion of energy lost due to friction $=\frac{35.36}{10^2/2}=0.71$	A1

5	(a)	Since the mass is not moving in a straight line, there must be a net	
	. ,	force acting on the mass according to Newton's first law.	B1
		Although the speed remains the same, its direction changes. Since,	D4
		the change in velocity acts towards the centre of circular motion,	B1
		the acceleration as well as the het force also acts towards the	
		centre of circular motion <u>according to Newton's second law</u> .	
	(b)	N O O O O	
		θ W $N\cos\theta + f\sin\theta - W = 0$	
		$N\cos 40 + 61\sin 40 - 8.0(9.81) = 0$	
		$N = 51.26 \mathrm{N}$	M1
		N = 51 N	AI
	(c)	$f\cos\theta - N\sin\theta = mr\omega^2$	
	. ,	$(2\pi)^2$	
		$61\cos 40 - 51\sin 40 = (8.0)(12)\left(\frac{1}{T}\right)$	C1
		$(2\pi)^2$	
		$13.9465 = (8.0)(12)\left(\frac{1}{T}\right)$	
		T = 16.5 s	
			A1
6	(a)	A field of force (around a mass) is a <u>region of space</u> that can be <u>mapped with lines of gravitational force (or with lines of gravitational potential)</u>	B1
		(Answer must be contextualised to "gravitational force" for the first point.)	
		Gravitational field strength at a point is defined as the gravitational <u>force per unit mass</u> acting on a small mass placed at that point.	B1
	(b)	Gravitational force provides the centripetal force for circular motion to take place.	B1
		By Newton's 2^{m} Law,	B1
		$GMm/r^2 = mr\omega^2$	יט
		$GM/r^3 = (2\pi/T)^2$	B1
		$T^2 = 4\pi^2 r^3 / GM$	
	(C)	$T_G = 7.16$, $Ig T_G = 0.85$	M1
		From graph, lg (r_G) = 9.05, r_G = 1.12 x 10 ⁹ m~ 1 x 10 ⁹ m (estimate)	A1
	(d)	T _T = (16.2 / 24) days, lg T _T = -0.17	B1

			From graph, lg (r _G) = 8.35, r _G = 2.24 x 10 ⁸ m	
			r _G calculated is the distance of the Thebe to the centre of Jupiter.	B1
			We can only decide on the accuracy of the statement if the radius	
	(.)		of Jupiter is known.	N 4 4
	(e)	(1)	$W = m.\Delta V = m.(\Phi \text{ final} - \Phi \text{ initial}) = 53.2(-42.5 - (-47.6))$	M1
		(11)	=2/1.32 MJ = 2/1.32×10° J ~ 2.7(1)×10° J	AI
		(11)	$\varphi = -GM/r$	
			$\varphi_r = constant$	M1
			$42.3(9.36) = 398.05 \approx 400$ $47.6(8.38) = 398.89 \approx 400$	
			$54 1(7 38) = 399 26 \sim 400$	
			Need to show constant value, to 1 s.f., for all 3 orbits	
			(shown)	
7	(a)		When there is no current through the 12 V battery, the potential	
			difference across the 12 V battery and the light bulbs must be equal	B1
			to 12 V.	
			If the p.d. across each light bulb is 12 V, the current through each bulb is $12/2$, $0 = 4.0$ A	
			buid is $12/3.0 = 4.0 \text{ A}$	
			Current through resistor $R = 4.0 + 4.0 = 8.0 A$	C1
				01
			p.d. across R = 14.0 – 12.0 = 2.0 V	
			resistance of R = 2.0 / 8.0 = 0.25 Ω	A0
	(b)		Since the potential difference across R_1 remains at 12 V, same	D1
			amount of current will now through R_1 and no current will now through R_2	ы
			unough rv2.	
			Hence, the current through the 14 V generator and resistor R will	B1
			reduce to 4.0 A	
			Since the p.d. across R remains the same at 2.0 V, the value of R	B1
			should be adjusted to a lower value (new R = 2.0 / 4.0 = 0.50 Ω)	
	(0)		There will be omf across the lamps over if either the generator or the	D1
	(0)		hattery is defective	ы
			The power from the generator can be used to charge the car's	B1
			battery when the light bulbs are removed.	
			The light bulbs will light up longer since energy is delivered from both	
			generator and battery.	
8	(a)	(i)	P = 236 Q = 92	B1
Ŭ	(4)	(')	R = 143	B1
		(ii)	$E = (\Delta m) c^2 = [(235.1 + 1.009) - (148.0 + 84.9 + 3 x1.009)] u c^2$	M1
			= (0.182) (1.66 x 10–27) (3.00 x 108)2	
			= 2.719 x 10–11 J for only one uranium nucleus	A1
	(1.)			D 4
	(b)	(1)	It is not triggered or affected by external conditions (temperature,	В1
			pressure, et cetera)	
		I		

	It is impossible to predict <i>which</i> nucleus will decay at a particular instant or <i>when</i> a particular nucleus will decay	B1
(ii)	${}^{90}_{38}Sr \to {}^{90}_{39}Y + {}^{0}_{-1}\beta$	
	Both correct yittrium and beta numbers	B1
(iii)	$N = N_0 e^{-\lambda t}$ where $\lambda = \frac{ln2}{t_{1/2}}$ (equations provided in data sheet)	MO
	$= (2.36 \times 10^{13})e^{-(\frac{1n2}{28})(112)}$	M1
	$= (2.36 \times 10^{13})(0.0625)$ $= 1.48 \times 10^{12}$	A1
	Alternative Half life is 28 years so 112 years is 4 half lives Number present after this time is 1/16 of original Number present = $2.36 \times 10^{13}/16 = 1.47(5) \times 10^{12}$	

Que	stions	5	Answers	Marks
9	(a)		Using $Q = mc\Delta\theta$, we get $1.79 \times 10^4 = m \times 5190 \times (50.0 - 10.0)$, giving $m = 0.08622$ kg	M1
			number of moles = $\frac{86.22 \text{ g}}{4 \text{ g mol}^{-1}}$ = 21.56 mol	M1
			number of atoms = $21.56 \times 6.02 \times 10^{23} = 1.298 \times 10^{25} = 1.30 \times 10^{25}$	A1
	(b)	(i)	gas that obeys $pV = nRT$	B1
			 <i>p</i>: pressure of the gas <i>V</i>: volume of the gas <i>n</i>: number of <u>moles</u> of the gas <i>T</i>: <u>thermodynamic</u> temperature of the gas or temperature in Kelvin 	B1
		(ii)	for ideal gas, internal energy consists <u>only of kinetic energies</u> of gas molecules.	B1
			$\Delta u = n \left[\frac{3}{2}R(T_f - T_i)\right] = 21.56 \times \frac{3}{2} \times 8.31 \times -40 = -10749 =$ -1.07 × 10 ⁴ J allow $\Delta u = \frac{3}{2}n(p_f V_f - p_i V_i)$ if the volumes of the gas were found. If candidates obtain $\Delta u = 1.07 \times 10^4$ J, award maximum of 1 mark even though first B1 may not be awarded.	B1
		(iii)	Since $\langle E_k \rangle = \frac{1}{2} m v_{rms}^2 = \frac{3}{2} kT$, $v_{rms} \propto \sqrt{T}$	B1
			$\frac{\sqrt{10 + 273.15} - \sqrt{50 + 273.15}}{\sqrt{50 + 273.15}} \times 100\% = -6.39\%$	B1

(c)	(i)	 <u>increase</u> in internal energy of the system is equals to the sum of thermal energy <u>supplied into</u> the system and work done <u>on</u> the system. B1: for directions of change (underlined) 	B2
	(ii)	$\Delta u = q + w \text{ gives } w = -1.07 \times 10^4 - (-1.79 \times 10^4) = 0.72 \times 10^4 \text{ J}$	B1
		so work done by the gas is -7.2×10^3 J	B1
	(iii)	for changes at constant volume, $w = 0$, so	B1
		$q = \Delta u = -1.07 \times 10^4 \text{ J}$	B1
(d)	(i)	Using $V = \frac{nRT}{p}$ gives $V_i = \frac{21.56 \times 8.31 \times (50 + 273.15)}{300\ 000} = 0.193\ \text{m}^3$ $V_f = \frac{21.56 \times 8.31 \times (10 + 273.15)}{300\ 000} = 0.169\ \text{m}^3$	B1
		pressure / 10 ⁵ Pa 3.00 0.169 0.193 volume / m ³	В1
	(ii)	 (positive) work is done on gas when process occurs at constant pressure, however no work done on gas when volume is constant 	B1
		• So for Δu to be equal <u>more thermal energy must be released by gas when the process</u> occurs at constant pressure than at constant volume	B1

10	(a)	(i)	A wave in which <u>energy is carried from one point to another</u> by means of vibrations or oscillations within the wave.	B1
			The <u>displacements of the particles in the wave are along the</u> <u>direction of transfer of energy</u> of the wave.	B1
		<i>(</i>)		D 4
	(a)	(11)	neighbouring particles move away from it simultaneously at that instant.	B1 B1
	(a)	(iii)	Distance of 2 wavelength between X and Z	
			wavelength λ = 5.1 / 2 = 2.55 m Since v = f λ = 130 x 2.55 = 330 m s ⁻¹	M1 A1
	(a)	(iv)	phase angle	A1
			$=(\frac{1.5\lambda}{2})2\pi$	
			=9.43 rad	
			(accept π or 3π)	
	(b)	(i)	Intensity of wave at position of microphone = $P / 4\pi x^2$ = 0.82/[$4\pi (4.8)^2$] = 2.83 x 10 ⁻³ W m ⁻²	M1
			Assume the area of the sphere receiving the waves is πr^2 ,	
			Power picked up by microphone = $I \ge A = (2.83 \ge 10^{-3}) \ge [\pi (0.025)^2]$	C1
			= 5.56 x10 ⁻⁶ W ~ 6 x10 ⁻⁶ W.	A1

(c)	(i)	path difference	
		-2×0.2011	۸1
		- 0.40 111	AI
(C)	(ii)	For next constructive interference to take place,	
		path difference = $n\lambda$ where n = 1.	
		λ = 0.40m	C1
		$v = f \lambda$	
		320 = f x 0.40	A1
		= 800 Hz	
	<i>/···</i>		D 4
(C)	(111)	tube (contextualised response)	В1
		meeting in the <u>opposite directions</u> . Since both waves are of <u>equal</u> <u>amplitude, frequency and speed</u> , they <u>superpose and interfere</u> to form a stationary wave.	B1
(c)	(iv)	A. Replace microphone with microwave detector connected to C.R.O.	B1
		B. Accept any other reasonable answers.	
		Since frequency of microwave is higher, the wavelength will be shorter. The path difference will be smaller as well so the distances between adjacent nodes and antinodes of the signal will be smaller.	B1