TUTOR'S

NAME

NANYANG JUNIOR COLLEGE JC 2 PRELIMINARY EXAMINATION Higher 1

CANDIDATE NAME

CLASS

CHEMISTRY

Paper 2

8872/02

10 September 2012 2 hours

Candidates answer on the Question Paper. Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all the questions.

Section **B**

Answer two questions on separate answer paper.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Section A				
1				
•	/ 12			
2				
	4			
3				
	5			
4				
-	/ 13			
5				
5	6			
Total				
	40			

This paper consists of 13 printed pages and 0 blank page

Section A

Answer **all** the questions. Write your answers on the spaces provided.

- 1 Nitrides are a large class of compounds with a wide range of properties and applications. They are often used as refractory materials. Two examples are magnesium nitride, Mg₃N₂ and boron nitride, BN.
- (a) Draw a dot-and-cross diagram to show the bonding in magnesium nitride.

[2]

For Examiner's

Use

(b) Suggest the electrical conductivity of magnesium nitride in liquid state.

(c) Boron nitride is a good lubricant like graphite. Explain, in terms of structure and bonding, this property of boron nitride.

Suggest one reason why magnesium gives the nitride, Mg₃N₂, in addition to its (d) oxide when burned in air. Construct a balanced equation for the combustion of Examiner's magnesium in air.

..... _____[2] A 2.00 g sample of the powder obtained from burning magnesium in air was boiled (e) with water. The ammonia that was evolved neutralised 12.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid. (i) Construct a balanced equation for the reaction with water.[1]

(ii) Calculate the percentage of magnesium nitride in the 2.00 g sample.

[3] [Total:12] [Turn Over

2 The formation of magnesium oxide from its elements may be represented by a Born-Haber cycle as shown below.

(b) Using values from the *Data Booklet* and the energy values given in the above cycle, calculate the value of ΔH_1 .

[2]

[Total:4]

3 Consider the following reversible reaction where colourless bromide ions react with For hydrogen peroxide to form a reddish-brown bromine solution. Examiner's Use $2Br^- + H_2O_2 + 2H^+ \rightleftharpoons Br_2 + 2H_2O$ $\Delta H < 0$ Explain what is meant by the term dynamic equilibrium. (a)[2] (b) Predict and explain the effect on the position of equilibrium when (i) a catalyst is added, (ii) temperature is increased.[3] [Total:5]

4 Cinnamaldehyde is used in fragrances for its jasmine-like odour.

cinnamaldehyde

(a) Name the **two** functional groups, other than the phenyl group, that are present in cinnamaldehyde.

.....[2]

(b) Cinnamaldehyde can exhibit geometric isomerism. Draw and label the structure of the geometric isomers and explain how it arises.

.....[3] (c) CH=CH₂ CHO is a structural isomer of cinnamaldehyde.

Describe a simple chemical test you could carry out to distinguish the two isomers. Draw the structure of the organic product for the positive test.

For Examiner's Use

- (d) Cinnamaldehyde reacts with hydrogen gas in the presence of nickel catalyst to give a saturated compound **A**.
- (i) State the type of reaction taking place.

.....[1]

(ii) Draw the structural formula of compound **A**.

[2]

- (e) Draw the structural formula of each of the organic products formed when cinnamaldehyde is treated with the following reagents:
- (i) acidified potassium dichromate(VI) when heated under reflux.

(ii) 2,4-dinitrophenylhydrazine.

[2]

[Total: 13]

5 Use of the Data Booklet is relevant to this question.

Part of the Periodic Table is shown below.

Gro	up l	II	III	IV	V	VI	VII	0
Period 2	Li	Be	В	С	Ν	0	F	Ne
Period 3	Na	Mg	Al	Si	Р	S	CI	Ar

(a) From the elements shown in the table, identify the one which exhibits each of the following property. Write your answers in the table.

- (i) It has the highest first ionisation energy.
- (ii) It has the largest ionic radius.
- (iii) It has an electronegativity similar to that of aluminium.
- (iv) It has a hydride that forms the strongest intermolecular hydrogen bonds.
- (v) It has a trifluoride with molecules of trigonal shape.
- (vi) It has a chloride that neither reacts with nor dissolves in water.
- (vii) It has an oxide with a giant structure and a chloride which is readily hydrolysed in water.
- (viii) It has an oxide that produces a strong acid when treated with water.

(i)	(ii)	(iii)	(iv)
(v)	(vi)	(vii)	(viii)

(b) Write equations for the reactions in (vii) and (viii).

[Total: 6]

[4]

For Examiner's Use

Section B

Answer **two** questions from this section on separate answer paper.

- **6(a)** Propan-2-ol is a clear colourless volatile liquid. It is often used as a solvent and an antiseptic. It can be formed from the reaction between propene and steam.
- (i) Name the type of reaction and state the conditions required for the reaction to occur.
- (ii) Write a balanced equation for the complete combustion of propan-2-ol.
- (iii) When 1.00 g of propan-2-ol was burned under a container of water, it was found that 100 g of water was heated from 20 °C to 80 °C. The process was known to be only 75% efficient.

Calculate the standard enthalpy change of combustion of propan-2-ol.

[6]

- (b)(i) Use bond energy values from the *Data Booklet* to calculate another value for the standard enthalpy change of combustion of propan-2-ol.
- (ii) Suggest a reason for the discrepancy between this value and the value calculated in **b**(i).

[4]

(c) R and S are aromatic compounds with the molecular formula C₉H₁₂O. Both R and S react with sodium metal. When heated with acidified K₂Cr₂O₇, the reagent does not change colour with S but turns green with compound R to produce compound T, C₉H₁₀O. Both R and T form a pale yellow precipitate with warm alkaline aqueous iodine.

In the presence of concentrated H_2SO_4 , **R** and **S** form hydrocarbons **U** and **V** respectively. Both **U** and **V** react with bromine to give **W** and **X** with the following structural formula:

Identify and suggest structures for **R**, **S**, **T**, **U** and **V**.

Show how you deduce these structures and suggest the types of reaction that are occurring.

[10]

[Total: 20]

7 This question is about hydroxyacids.

One of the simplest hydroxyacids is lactic acid, 2-hydroxypropanoic acid. It can be synthesised in the laboratory by the following route.

CH₃CHO I CH₃CH(OH)CN II CH₃CH(OH)CO₂H lactic acid

(a) State the reagents and conditions needed for reaction I and reaction II.

[3]

- (b) Lactic acid is used to treat warts which are viral growths on dead skin. The value of its acid dissociation constant, K_a , is just high enough for the acid to kill the infection without damaging the live skin underneath.
- (i) Write an equation for the reaction between lactic acid and water. Indicate which species are the acid, the base and their conjugate pairs in the reaction.
- (ii) Explain what is meant by the term acid dissociation constant, K_a .
- (iii) Lactic acid is described as a *weak Bronsted acid*. What do you understand by the terms in italics?

[7]

- (c) After consuming food or drinks containing sugar, the pH in the mouth can decrease from pH 6.8 to a pH of about 4.8 as the sugar is broken down into lactic acid. In time, hydrogencarbonate ions in saliva restore the pH to its original value.
- (i) How many times greater is the hydrogen ion concentration in the mouth at pH 4.8 compared with that at pH 6.8?
- (ii) Write an equation to show how hydrogencarbonate ions decrease the acidity.

[3]

(d) When lactic acid reacts with ethanol to form an ester, the following equilibrium is established.

 $CH_{3}CH(OH)CO_{2}H(I) + CH_{3}CH_{2}OH(I) \rightleftharpoons CH_{3}CH(OH)CO_{2}CH_{2}CH_{3}(I) + H_{2}O(I)$

A student mixed 0.2 mol of lactic acid in a conical flask with 0.3 mol of ethanol and 1.0 mol of water. He then carefully added concentrated sulfuric acid catalyst. The flask was sealed with a bung and cooled rapidly in an ice bath. It was found that 0.05 mol of lactic acid was present at equilibrium.

- (i) Explain the purpose of cooling the conical flask rapidly.
- (ii) Write an expression for the equilibrium constant, K_c , for this reaction. Calculate the value of K_c .
- (iii) Suggest and explain what would happen to the position of equilibrium if more lactic acid were added to the conical flask. [5]
- (e) On heating in the absence of air, lactic acid loses water to give a single compound Z, C₆H₈O₄. Compound Z is a neutral compound that does not react with both sodium and 2,4-dinitrophenylhydrazine.

Suggest the identity of compound **Z**.

[2]

[Total: 20]

- 8(a)(i) Using the chlorides of magnesium, aluminium and phosphorus as examples, describe the reactions of the chlorides of the third period of the Periodic Table with water. Write equations where appropriate.
- (ii) Suggest what influence the type of bonding present in these three chlorides has on their reaction with water.
- (iii) Aluminium chloride forms a compound with ammonia. State the type of bond that is formed during this reaction. Draw a diagram to illustrate the shape of and bonding in the product.

[7]

(b) Methylbenzene can undergo halogenation with chlorine as follows:

- (i) State the reagents and conditions needed for reaction I and reaction II.
- (ii) Use bond energy values from the *Data Booklet* to calculate the enthalpy change for reaction **I**.
- (iii) Using your answer from **b(ii)**, construct a reaction pathway diagram for reaction **I**.

[6]

(c) The hydrolysis of $C_6H_5CH_2CI$ in alkaline solution is represented by the equation below:

In investigations of this reaction, the following results were obtained.

Experiment	Initial concentratio	Initial rate	
Experiment	[C ₆ H ₅ CH ₂ CI]	[OH ⁻]	/ mol dm ⁻³ s ⁻¹
Ι	0.10	0.10	0.024
II	0.10	0.15	0.036
III	0.20	0.10	0.048

- (i) Deduce the order of reaction with respect to
 - C₆H₅CH₂Cl
 - OH⁻

Hence construct a rate equation for the reaction.

- (ii) Predict how you would expect the rate of reaction to change if the total volume of the reaction mixture is doubled.
- (iii) With the aid of a suitable diagram, explain why a relative small increase in temperature can cause a large increase in the rate of reaction between $C_6H_5CH_2CI$ and OH^- .

[7]

[Total:20]