SEC 4E CHEMISTRY 6092

PRELIM 2023 PAPER 2 MARK SCHEME

	SECTION A (50 marks)						
A1	(a)	(i)	O/S/Se				1
		(ii)	Cl				1
		(iii)	Не				1
		(iv)	N				1
		(v)	C				1
	(b)	(i)			0	-	2
					0	F	
				549/131	0.134/16	0.317/19 - 0.0167	
			simplest ratio 1	0.00413	2	4	
					2	т	
			XeO ₂ F ₄ (1)				
		(ii)	Relative molecular mass Mr	/ relative formula	a mass / molar mas	S	1
	(c)						
	(d)		ALLOW same symbol for bo correct shared electron pairs rest of molecule correct (1) any one from: physical property oxide of aluminium has a hig melting/boiling point	th atoms $s(1)$	point but oxide of	sulfur has a low	2
			oxide of aluminium conducts not conduct in any state oxide of aluminium is insolut any one from: <u>chemical property</u> oxide of aluminium is ampho ALLOW oxide of amphoteric oxide of aluminium can reac with alkalis ALLOW oxide of aluminium	s electricity when ole in water but o oteric but oxide o but oxide of sulf t with acids and is ionic but oxide	melted but oxide of sulfur is sol f sulfur is acidic fur is not alkalis but oxide of	of sulfur does uble in water sulfur can only react	2
						Total	12
AZ	(a)	(1)	AF OF Fe (56) IS Smaller than Hence there are more moles	Ar of Zn (65) (1)	an 7n(1)		2
		(ii)	metal that gives a steeper st	ope / larger grad	lient / more das pro	duced per unit time /	2
		()	shorter reaction time for a fixed volume of gas (1)				1
		(iii)	Any three from:	<u>0</u> -	· · ·		
		-	For iron, green precipitate formed (1), insoluble in excess (1)				
			For zinc, white precipitate formed (1), soluble in excess (1) / giving colourless				_
	(h)	(1)	Solution $Cu^2 t(aa) + 2a^2 + Cu(a)$				3
	(a)	(1)	$Uu^{-1}(aq) + 2e^{-} \rightarrow Uu(s)$				
			state symbols (1)				2
		(ii)	The concentration decreases				1
	-	(iii)	There is no change in the concentration 1				1
						Total	10

A4	(a)	(i)	What are the positions of the four metals in the reactivity series?	
		(ii)	D	1
		(iii)	Ionic equation of this form:	
			$X + Y^{2+} \rightarrow X^{2+} + Y$	
			e.g. Sn + Cu²+ →Sn²+ + Cu	
		(iv)	any of following for (1)	
			copper in copper(II) sulfate	
			tin in tin(II) sulfate	
			iron in iron(II) sulfate	
			zinc in zinc sulfate	
			metal in its own sulfate solution	
			metals in their own sulfate solutions	
			metals do not displace themselves from solution / metals do not react with their own	
			sulfate (1)	
			Accept any reasonable explanation.	
	(1.)	(1)	No credit for answers with example given but without explanation	
	(D)	(1)	either of following:	1
			the reaction is (extremely) exothermic	
			the reaction temperature is above melting point of iron	
			the melting point of iron is below 2500 °C	
		(ii)	$moles of Ee \Omega_0 = 1000 / 160 = 6.25 (1)$	
		(")	moles of Fe produced -12.5 (mole ratio is 1.2)	
			mass of Fe produced = $12.5 \times 56 = 700 \text{ g}(1)$	2
				-
			$\frac{112}{160} \times 1000 (1) = 700 g (1)$	
		(iii)	Aluminium loses electrons / transfers its electrons to iron	1
			Total	9

A5	(a)	(i) (ii)	combustion of hydrogen making hydrogen from water	3	
			energy H_2, O_2 energy H_2, O_2 H_2, O		
		(iii)	Reasons for great fuel: (any two) Combustion of hydrogen is (highly) exothermic / gives out (lots of) energy Combustion of hydrogen has a <u>small</u> activation energy Combustion of hydrogen forms <u>only</u> water (so pollution free) - ALLOW Reasons for sustainability: (any two) Making hydrogen is endothermic/takes in energy Making hydrogen has a <u>large</u> activation energy Energy given out when hydrogen burns is the same as the energy taken in when it forms		
			Electrolysis requires energy Fossil fuels are used to supply energy for electrolysis High activation energy for making hydrogen means more fossil fuel needed		
	(b)		moles of $C_2H_5OH = 0.005$ (1) energy released = (moles of $C_2H_5OH \times 1350$) (1) = 6.75 kJ (1)		
			Total	10	

SECTION B (30 marks)					
B6	(a)	$2H^+ + 2e^- \rightarrow H_2$	1		
	(b)	The sodium hydroxide formed during electrolysis reacts with chlorine to form sodium hypochlorite <u>or</u> There is unwanted side reaction between sodium hydroxide and chlorine <i>Accept difficult to carry out continuous separation of chlorine and sodium hydroxide.</i>	1		
	(c)	Mass of sodium hydroxide in 1000 dm ³ of output solution = $12 \times 1000 = 12\ 000\ g(1)$ $\frac{12000}{V} = 50\ g/dm^3 \Rightarrow V = \frac{12000}{50} = 240\ dm^3(1)$ Volume of water that needed to be evaporated = $1000 - 240 = 760\ dm^3(1)$	3		
	(d)	The chloride ions cannot pass through the membrane ALLOW: The chloride ions or anions cannot enter the cathode compartment	1		
	(e)	To remove SO ₄ ²⁻ , add barium chloride / calcium chloride (NOT : lead chloride) To remove Mg ²⁺ , add sodium carbonate / sodium hydroxide Remove precipitates by filtration (ALLOW: sedimentation)	1 1 1		
	(f)	For every mole Cl_2 produced, 2 moles of NaOH are produced. Mass of $Cl_2 = 1 \times 71 = 71$ g Mass of NaOH = $2 \times 40 = 80$ g (1) mass ratio = $\frac{80 \text{ g}}{71 \text{ g}} = 1.13$ (1) $\frac{\text{Or}}{\text{For every 1 g of } Cl_2 \text{ produced,}}$ moles of $Cl_2 = \frac{1}{71} = 0.01408$ (1) expected moles of NaOH = $2 \times \frac{1}{71} = 0.02817$ (mole ratio is 1:2) expected mass of NaOH = $40 \times \frac{2}{71} = 1.13$ g mass ratio = $\frac{1.13 \text{ g}}{1 \text{ g}} = 1.13$ (1)	2		
	(g)	$2Cl + 2H_2O \rightarrow H_2 + Cl_2 + 2OH^-$	1		
		Total	12		
B7	(a)	Due to the attraction between oppositely-charged ions / positive and negative ions ALLOW: electrostatic forces of attraction between ions	1		
	(b)	attraction between (a lattice of) positive ions / cations (1) and delocalised / 'sea' of electrons (1)	2		
	(c)	giant covalent consists of only atoms / no ions (1) no mobile / moving / free-moving / delocalised electrons (1) giant ionic when solid, ions cannot move (1) when liquid, ions can move (1) giant metallic (both solid and liquid) metals have mobile / moving / free-moving / delocalised electrons (1)	5		

B8 (E)	(a)	(i)	Both have different number of oxygen atoms / different molecular formula		1
		(ii)	EITHER test: Universal indicator (1) / add a metal carbonate e.g. sodium carbonate (1) cyclobutanol: goes green / does not change colour / no visible change (1) butanoic acid: goes red / orange or yellow (1) / bubbling of gas (1) OR test: heat with named alcohol (1) cyclobutanol: no reaction butanoic acid: gives sweet smelling compound (1) OR test: heat with named carboxylic acid (1) cyclobutanol: gives sweet smelling compound butanoic acid: no reaction (1) Allow adding of potassium manganate(VII). cyclobutanol: purple to colourless butanoic acid: no visible change		2
	(b)		No. of moles of linoleic acid in $100g = \frac{100}{280} = 0.3571$ (1) 1 mole of linoleic acid reacts with 2 moles of iodine No. of moles of iodine reacted = $0.3571 \times 2 = 0.7142$ (1) Mass of iodine reacted = $0.7142 \times 254 = 181$ (iodine value) (1)		
	(c)	(i)	$C_{18}H_{36}O_2$		3 2
		(ii)	iodine value = 0 linoleic acid: (rapidly) turns aqueous bromine from red-brown to colourless (1) stearic acid: aqueous bromine remains red-brown / no visible change (1)		2
				Total	10
B8 (O)	(a)		energy absorbed in bond breaking / total endothermic change: 436 + 158 = +594 kJ (1) energy released in bond forming / total exothermic change: $2 \times 562 = -1124$ kJ (1) enthalpy change for reaction = -530 kJ (exo) (1) not necessary to calculate -530, just show that exo change > than endo ALLOW: ECF		3
	(b)		HI is a strong acid AND HF is a weak acid		1
		(1)	HI is stronger than HF scores 0		
	(c)	(i)	with hydriodic acid – solution turns brown		1
		/ii)	with hydriodic acid – no change seen		1
		(11)	with hydrochloric acid – white precipitate (ppt) seen		
	(d)		oxidised (1), oxidation state of Li increases from 0 to $+1$ (1)		2
	/			Total	10