Qn		Solution	Content/Success Criteria
1	(a)	8700	I can perform calculations
			with a calculator.
			I can round off values to the nearest hundred.
	(b)	1050	Content L
			Complexity L
			Context L
			Response L
			Strategy
			Assessment AO1
			Objective

2024 TKGS PRELIM MATH P1 SOLUTION

Qn		Solution	Content/Suc	cess Criteria	
2	(a)	5-2(6x-1)	I can expand	I can expand and simplify	
		=5-12x+2	algebraic exp	ressions.	
		=7-12x	I can apply sin expression us indices.	mplify ing laws of	
			Content	L	
			Complexity	L	
			Context	L	
	(b)	$\left(\frac{27b^9}{a^6}\right)^{-\frac{1}{3}} = \left(\frac{a^6}{27b^9}\right)^{\frac{1}{3}}$	Response Strategy	L	
		$=\frac{a^2}{3b^3}$	Assessment Objective	AO1	

Qn	Solution	Content/Success Criteria	
3	Let amount of savings Albert and Chris have initially be $5x$	Content	L
	and $3x$ respectively.	Complexity	L
		Context	L
	$\frac{5x-30}{2} = \frac{2}{2}$	Response	М
	3x - 30 = 1	Strategy	
	5x - 30 = 2(3x - 30)	Assessment	AO2
	5x - 30 = 6x - 60	Objective	
	x = 30		
	3x = 90		
	The amount of savings Chris has at the start $=$ \$90		

Qn		Solution	Content/Success Criteria	
4	(a)	$1400 = 2^3 \times 5^2 \times 7$	I can express a number in its prime factors.	
	(b)	$1400 = 2^3 \qquad \times 5^2 \times 7$		
		$q = 2^2 \times 3 \qquad \times 7 = 84$	I can use the prime	
		$HCF = 2^2 \times 7$	factors from HCF to find the original number.	
		$\therefore q = 84$		
			Content	L
			Complexity	Н
			Context	L
			Response	М
			Strategy	
			Assessment	AO1/
			Objective	AO2

	Crite	eria
$\frac{1}{2^{\alpha-1}} = 2^3 + 2^3 + 2^3 + 2^3$	I can solve equation using laws of indices	
$\frac{1}{1} - 32$	$a^m \times a^n$	$=a^{m+n}$
$2^{a-1} = 52^{a-1}$ $2^{1-a} = 2^{5}$	a^{-n}	$=\frac{1}{a^n}$
Comparing indices,	Content	L
1 - a = 5	Complexity	Н
a = -4	Context	L
	Response Strategy	Н
	Assessment Objective	AO2
$\frac{1}{2^{a-1}} = 2^3 + 2^3 + 2^3 + 2^3$ $\frac{1}{2^{a-1}} = 2^3(1+1+1+1)$		
$\frac{1}{2^{a-1}} = 2^{3}(2^{2})$ $\frac{1}{2^{a-1}} = 2^{5}$		
$2^{-(a-1)} = 2^{5}$ -a+1=5 a=-4		
	$\frac{1}{2^{a-1}} = 2^3 + 2^3 + 2^3 + 2^3$ $\frac{1}{2^{a-1}} = 32$ $2^{1-a} = 2^5$ Comparing indices, $1 - a = 5$ $a = -4$ $\frac{1}{2^{a-1}} = 2^3 + 2^3 + 2^3 + 2^3$ $\frac{1}{2^{a-1}} = 2^3 (1 + 1 + 1 + 1)$ $\frac{1}{2^{a-1}} = 2^3 (2^2)$ $\frac{1}{2^{a-1}} = 2^5$ $2^{-(a-1)} = 2^5$ $-a + 1 = 5$ $a = -4$	$\frac{1}{2^{a-1}} = 2^3 + 2^3 + 2^3 + 2^3$ $\frac{1}{2^{a-1}} = 32$ $2^{1-a} = 2^5$ Comparing indices, $1 - a = 5$ $a = -4$ Content Content Complexity Context Response Strategy Assessment Objective $\frac{1}{2^{a-1}} = 2^3 + 2^3 + 2^3 + 2^3$ $\frac{1}{2^{a-1}} = 2^3 (1 + 1 + 1 + 1)$ $\frac{1}{2^{a-1}} = 2^3 (2^2)$ $\frac{1}{2^{a-1}} = 2^5$ $2^{-(a-1)} = 2^5$ $-a + 1 = 5$ $a = -4$

	Qn	Solution	Content/Success Criteria		
6	(a)	$2(5m+3n)^{2}$ = 2(25m ² + 30mn + 9n ²) = 50m ² + 60mn + 18n ²	I can use identity $(a+b)^2 = a^2 + 2ab + b^2$ to expand algebraic expressions.		
	(b)	$24(mn)^{2} - 21mn^{3}$ = $24m^{2}n^{2} - 21mn^{3}$ = $3mn^{2}(8m - 7n)$	I can factorise algebraic expressions by taking ou common factor.		
			Complexity	M	
			Context	L	
			Response	М	
			Strategy		
			Assessment		
			Objective	AO1	

Qn	Solution	Content/ Crite	'Success eria
7	$\frac{1}{2}(4.5)(7.1)\sin \angle XYZ = 12.6$	I can use $\frac{1}{2}at$	bsinC for
	$15.975 \sin \angle XYZ = 12.6$ $\sin \angle XYZ = \frac{12.6}{15.975}$ $\sin \angle XYZ = \frac{56}{71}$ 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 4.5 7.1 7.1 4.5 7.1	area of triang sine of acute angles in radi	le to find and obtuse ans.
	$\angle XYZ = 0.909 \text{ radian}$ $\angle XYZ = 2.23 \text{ radian}$		
		Content	L
		Complexity	М
		Context	L
		Response	L
		Strategy	
		Assessment	AO2

Qn	Solution	Content/Success	
0			eria
8	$P = \frac{k}{k}$, where k is a non-zero constant	I can use inve	erse
	Q^{3}	proportion to	find
	Q is reduced by 20%, substitute original Q with $0.8Q$.	percentage ch	lange.
	k	Content	L
	$P_{\rm new} = \frac{1}{(0.80)^3}$	Complexity	M
		Context	L
	$=\frac{k}{2}$	Response	L
	$0.512Q^{3}$	Strategy	
	\mathbf{N} (\mathbf{p} 1 1000/	Assessment	
	New percentage of $P = \frac{1}{0.512} \times 100\%$	Objective	AO2
	- 105 5 %		
	$-195\frac{1}{16}$		
	Percentage change in $P = 95\frac{5}{16}\%$ or 95.3125%		
	$Q_{new} = 80\% of Q$		
	$=\frac{4}{5}Q$		
	$P_{\rm new}\left(\frac{4}{5}Q\right)^3 = PQ^3$		
OR	$P_{\rm new} = \frac{125}{64} P$		
	Percentage change in $P = \frac{\frac{125}{64}P - P}{P} \times 100\%$		
	$=\frac{61}{64} \times 100\%$		
	$=95\frac{5}{16}\%$ or 95.3125%		

(Qn	Solution	Content/Success
	-		Criteria
9	(a)	$1 + (-6)^2$	I can evaluate algebraic
		-+(-0)	expressions by
		$p = \frac{1}{1}$	substitution.
		$\frac{-5}{5}$	
		$=-\frac{181}{24}$ or $-7\frac{13}{24}$ or -7.54	
	(b)	$p = \frac{q + r^2}{r}$	
		q-5	I can change the subject
		$p(q-5) = q + r^2$	of the formula.
		$pq-5p=q+r^2$	
		$na-a-r^2+5n$	Content L
		pq $q-r$ pp	Complexity L
		$q(p-1) = r^2 + 5p$	Context L
		$r^2 + 5p$	Response L
		$q = \frac{1}{n-1}$	Strategy
		P +	Assessment
			Objective AO1

Qn		Solution	Content/ Crite	'Success eria
10	(a)	$\sin 30^\circ = \frac{BD}{32}$ $DB = 32 \sin 30^\circ$ Essential step $= 16 \text{ cm}$	I can use TOA CAH SOH to find unknown sides in right-angled triangle.	
			Content	L
			Complexity	L
			Context	L
			Response Strategy	L
			Assessment Objective	AO1
	(b)	$AD^{2} + BD^{2} = 12^{2} + 16^{2}$ = 400 $AB^{2} = 20^{2}$ = 400 Since $AD^{2} + BD^{2} = AB^{2}$, angle $ADB = 90^{\circ}$ by the converse of Pythagoras' Theorem. Since angle $ADB = 90^{\circ}$, by the property right angle in semicircle, it is possible to draw diameter AB such that point D lies on the circumference of the circle.	I can use converse of Pythagoras Theorem to prove right angles. I can use right-angle in semicircle to determine that the points in triangle lie on the circumference of circle.	
			Content	Ц
			Complexity	H
			Context	L
			Response	Н
			Strategy	
			Assessment Objective	AO3

Qn	S	Content/Success Criteria		
11	$\frac{3}{(1-2h)^2} + \frac{8}{2h-1}$ $= \frac{3}{(1-2h)^2} - \frac{8}{1-2h}$	Alternatively, $\frac{3}{(1-2h)^{2}} + \frac{8}{2h-1}$ $= \frac{3}{(2h-1)^{2}} + \frac{8}{2h-1}$	I can add two fractions with denominators	algebraic quadratic
	$-\frac{3-8(1-2h)}{2}$	-3+8(2h-1)	Content	L
	$-\frac{1}{(1-2h)^2}$	$-\frac{1}{(1-2h)^2}$	Complexity	М
	$-\frac{3-8+16h}{10}$	$-\frac{3+16h-8}{2}$	Context	L
	$= \frac{(1-2h)^2}{(1-2h)^2}$ $= \frac{-5+16h}{(1-2h)^2}$	$= \frac{(1-2h)^2}{(1-2h)^2}$ $= \frac{16h-5}{(1-2h)^2}$	Response Strategy	М
			Assessment	
			Objective	AO1

Qn		Solution	Content/Success Criteria	
12	(a)	2 <i>k</i> – 5	I can form and solve linear inequalities in one variable.	
	(b)	2k-5+2k-3>16	Content	L
		4k - 8 > 16	Complexity	L
		4k > 24	Context	L
		<i>k</i> > 6	Response Strategy	L
		Smallest possible value of the larger odd number = $2(7) - 3$ = 11	Assessment Objective	AO1

Qn	Solution	Content/Success Criteria		
13	OA = OB = OD (radius of circle) Angle $BAO = x^{\circ}$ (base $\angle s$ of isos Δ) Angle $AOB = 180^{\circ} - 2x^{\circ}$ (\angle sum of isosceles Δ) Angle $DAO = y^{\circ}$ (base $\angle s$ of isos Δ) Angle $AOD = 180^{\circ} - 2y^{\circ}$ (\angle sum of isosceles Δ)	I can use ang of circles to f unknown ang	le properties ind an de.	
	Angle $BCD = \frac{1}{2} [(180^\circ - 2x^\circ) + (180^\circ - 2y^\circ)]$ (\angle at centre = 2 \angle at circumference)		L L L	
	$= \frac{1}{2} (360^{\circ} - 2x^{\circ} - 2y^{\circ})$ $= 180^{\circ} - x^{\circ} - y^{\circ}$	Response Strategy Assessment Objective	M AO2	
OR	Angle $BAO = x^{\circ}$ (base $\angle s$ of isos \triangle) Angle $DAO = y^{\circ}$ (base $\angle s$ of isos \triangle) Angle $BCD = 180^{\circ} - x^{\circ} - y^{\circ}$ ($\angle s$ in opp. segment)			

Qn		Solution	Content Crit	/Success eria
14	(a)	(3x+1)(x-5)	I can factorise quadratic expression in the form $ax^2 + bx + c$.	
	(b)	$3(y+1)^2 - 14y - 19$	Content	L
		$=3(y+1)^{2}-14y-14-5$	Complexity	М
		$=3(y+1)^2-14(y+1)-5$	Context	L
		By observation with algebraic expression in part (a), it is observed that $y+1 = x$. Using answer from part (a), [3(y+1)+1][(y+1)-5] = (3y+4)(y-4)	Response Strategy	М
			Assessment	AO1/
			Objective	AO2

Qn	Solution	Content/ Crite	Success eria
15	Substitute $x = 2$ and $y = 3$ into equation of the curve $3 = a(2)^2 + b(2) + 2$ 3 = 4a + 2b + 2 1 = 4a + 2b(1) Substitute $x = -1$ and $y = -3$ into equation of the curve $-3 = a(-1)^2 + b(-1) + 2$ -3 = a - b + 2 -5 = a - b(2) From (2), $a = -5 + b$ (3) Substitute (3) into (1) 1 = 4(-5+b) + 2b 1 = -20 + 4b + 2b 21 = 6b	I can apply th of substituting coordinates of form and solve linear equations in t variables.	e concept g f points to wo
	<i>b</i> = 3.5	Content	М
		Complexity	L
	Substitute $b = 3.5$ into (3)	Context	L
	a = -3 + 3.3	Response	L
	a = -1.5	Strategy	
	Therefore, $a = -1.5$ and $b = 5.5$	Assessment Objective	AO2

C)n	Solution	Content/ Crit	'Success eria
16	P(choosing a red marble) = $1 - \frac{1}{6} - \frac{7}{12}$ = $\frac{1}{4}$ Let the total number of marbles in the bag be x. $\frac{1}{4}x = 15$		I can find the of single and events.	probability combined
		$4^{x} = 15 \times 4$ $= 60$	Content	L
	(0)	Number of blue marbles = $\frac{1}{6} \times 60$	Context	L
		=10	Response Strategy	L
		$60^{\circ} 59 = \frac{3}{118}$	Assessment Objective	AO1

Q)n	Solution	Content/Success Criteria	
17	(a)	$\angle BCD = \frac{(5-2) \times 180^{\circ}}{5}$ = 108° $\angle DCI = \frac{(6-2) \times 180^{\circ}}{6}$ = 120° $\angle BCI = 360^{\circ} - 108^{\circ} - 120^{\circ} \ (\angle s \text{ at a point})$ = 132°	I can able to apply concepts of inter- and exterior angles of polygons and angles at a point to find unknown. Int. $\angle + \text{Ext.} \angle = 180^{\circ}$ Sum of int. $\angle s = (n-2) \times 180^{\circ}$ Number of sides = $\frac{360^{\circ}}{110^{\circ}}$	
		Alternatively.	Content	e of 1 ext. ∠ L
		360°	Complexity	L
		One ext. \angle of pentagon = $\frac{1}{5}$	Context	
		$=72^{\circ}$ One ext. \angle of hexagon $=\frac{360^{\circ}}{2}$	Response Strategy	L
		6	Assessment Objective	
		$= 60^{\circ}$		AO2
	(b)	Exterior angle = $180^{\circ} - 132^{\circ}$ = 48° Number of sides of polygon = $\frac{360^{\circ}}{48^{\circ}}$ = 7.5 Since the number of sides is not a positive integer greater than 3, <i>BC</i> and <i>CI</i> cannot be sides of a regular polygon. Alternatively, using interior angles of polygon $132^{\circ} = \frac{(n-2) \times 180^{\circ}}{2}$	I can use properties of po determine if a polygon h sides.	olygons to as equal
		n	Content	L
		$132^{\circ}n = 180^{\circ}n - 360^{\circ}$	Complexity	L
		$48^{\circ}n = 360^{\circ}$	Context	L
		n = 7.5	Response	Μ
		Since the number of sides is not a positive integer	Strategy	
		greater than 3, <i>BC</i> and <i>CI</i> cannot be sides of a regular polygon.	Assessment Objective	AO3

C)n	Solution	Content/Success Criteria	
18	(a)	$\frac{1}{2} \times \left(\frac{42}{60} + \frac{63}{60}\right) \times v = 14$ $\frac{7}{8}v = 14$ $v = 16 \text{ (shown)}$	I can use distance in speed-time graph to find speed.	
			Content L	
		Alternatively,	Complexity M	
		$v = \frac{4}{m}$ km/h $v = \frac{4}{m}$ km/min	Context L	
		$= \frac{4}{4} \div 60 \text{ km/h} \qquad \text{or} \qquad = \frac{4 \text{ km}}{4 \text{ km}}$	Response H Strategy	
		$\begin{array}{r} 15 \\ =16 \text{ km/h} \\ =16 \text{ km/h} \end{array}$	Assessment Objective AO2	
	(b)	$\frac{5}{11} \times 16$ = $7\frac{3}{11}$ km/h or 7.27 km/h (3 sf)	I can find unknown speed and acceleration in speed-time graph.	
			Content L	
	(c)	Acceleration = Gradient in last 10 mins	Complexity L	
			Context L	
		$-\frac{10}{60}$	Response L Strategy	
		$= -96 \text{ km/h}^2$	Assessment Objective AO1	

Qn		Solution	Content/Success Criteria	
19	(a)	23	I can apply concepts of mode and range to stem- and-leaf diagram.	1-
	(b)	$\frac{4}{-1} \times 100\% - 28\frac{4}{-1}\%$	Content L	
		14 7	Complexity M	
			Context L	
			Response M Strategy	
	(c)	11 + 31 = 42	Assessment AO1/	
		40-31=9	Objective AO2	

Q	n	Solution	Content/S Criter	uccess ia
20	(a)	$T_5 = \frac{6}{5^4} - \frac{7}{5^5} = \frac{23}{3125}$	$\frac{7}{5^5} = \frac{23}{3125}$ I can recognize and represent pattern by finding an algebraic expression for the <i>n</i> th term. Skills: $5^{n-1} = 5^n \times 5^{-1}$	
	(b)	$T_n = \frac{n+1}{5^{n-1}} - \frac{n+2}{5^n}$ 5(n+1) n+2	$5^{-1} = \frac{1}{5}$	
		$=\frac{5(n+1)}{5^n}-\frac{n+2}{5^n}$	Content	L
		5(n+1) - (n+2)	Complexity	М
		$=\frac{5^{n}}{5^{n}}$	Context	L
		$=\frac{5n+5-n-2}{5^n}$	Response Strategy	М
		$=\frac{4n+3}{5^n}$ (shown)	Assessment Objective	AO1/ AO2
	(c)	$\begin{array}{cccc} T_1 + T_2 + T_3 + \dots + T_{10} \\ (2 & 3) & (3 & 4) & (4 & 5) \\ \end{array} $ (11 12)		
		$= \left(\frac{2}{1} - \frac{3}{5}\right) + \left(\frac{3}{5} - \frac{1}{5^2}\right) + \left(\frac{1}{5^2} - \frac{3}{5^3}\right) + \dots + \left(\frac{11}{5^9} - \frac{12}{5^{10}}\right)$	Content	L
		2 12	Complexity	M
		$=\frac{2}{1}-\frac{12}{5^{10}}$	Context	
		-2.00 (to 3 s f)	Strategy	п
		- 2.00 (10 5 5.1.)	Assessment	
			Objective	AO3

Ç)n	Solution	Content/ Crite	Success eria
21	(a)	t + 12 + t - 2	I can apply co	oncepts of
		=(2t+10) minutes	average speed	l to find
		=(2i+10) minutes	time.	
	<i>(</i> -),			
	(b)	Average speed = $\frac{\text{Total distance}}{\frac{1}{2}}$		
		Total time		
	$10.5 = \frac{8.75}{10.5}$			
		$10.5 = \frac{10.5}{2t+10}$		
		$\begin{pmatrix} 60 \end{pmatrix}$		
		2t + 10 = 8.75		
		$\frac{1}{60} = \frac{1}{10.5}$		
		2 (8.75)		
		$2t + 10 = 60 \left(\frac{10.5}{10.5} \right)$		
		2t + 10 = 50		
		Total time = 50 minutes		
		Alternatively:		
		$10.5 \text{ km/h} = \frac{10.5 \text{ km}}{10.5 \text{ km}}$		
		1 h		
		_ <u>10.5 km</u>		
		60 min		
		-7 km/min		
		$-\frac{1}{40}$ Kin/iiiii		
		Average speed – Total distance		
		Total time		
		7 8.75		
		$\frac{1}{40} = \frac{1}{2t+10}$		
		7(2t+10) = 350		
		14t + 70 = 350		
		14t = 280	~	-
		t = 20	Content	L
			Complexity	L
		Time taken for the whole journey = $2(20) + 10$	Context	L
		=50 minutes	Response	L
			Strategy	1.011
			Assessment	AO1/
			Objective	AO2

Qn			Solution			
22	*Note: North line at A must be parallel to BC because C is due north of B.					
	Content/Succe	ess Criteria				
	I can construct	perpendicula	r bisectors, angle bisectors and points with given bearing.			
	I can draw cond	clusions of th	e required area after constructing the bisectors.			
	Content L					
	Complexity	L				
	Context	L				
	Response	Μ				
	Strategy					
	Assessment Objective	AO1/AO2				

Qn		Solution		Content/Success Criteria
23	(a)(i)	4.2		I can calculate mean and standard deviation from grouped data using a calculator.
	(a)(ii)	2.47		Content L
				Complexity L
				Context L
				ResponseLStrategy
				Assessment
				Objective AO1

(b)	The mean number of books will increase by 2 while the standard deviation value will remain the same.	I can draw sir inferences fro and standard values.	nple m mean deviation
		Content	М
		Complexity	L
(c)	SD of class $A = 2.47$	Context	L
	SD of class $B = 3.15$	Response	Н
	Since the standard deviation value of class A is lesser	Strategy	
	than class <i>B</i> by 0.68, class <i>A</i> has a smaller spread about	Assessment	
	the mean and the number of books read by class A is	Objective	AO3
	more homogeneous in general.		

Qn		Solution	Content/Success Criteria	
24	(a)	$W = 5 \begin{pmatrix} 25 & 32 & 40 \\ 21 & 19 & 32 \end{pmatrix}$ $= \begin{pmatrix} 125 & 160 & 200 \\ 105 & 95 & 160 \end{pmatrix}$	I can solve problems involving sum and product of matrices.	
	(b)	$C = \begin{pmatrix} 40\\25\\30 \end{pmatrix}$		
	(c)	$T = \begin{pmatrix} 125 & 160 & 200 \\ 105 & 95 & 160 \end{pmatrix} \begin{pmatrix} 40 \\ 25 \\ 30 \end{pmatrix}$		
		(15000)	Content	L
		$= \begin{bmatrix} 15000\\ 11275 \end{bmatrix}$	Complexity	L
		(11375)	Context	L
			Response	М
	(d)	The elements in T represent the total amount of school fees	Strategy	
		paid for weekdays in a week for beginner and advanced	Assessment	AO1/
		students respectively.	Objective	AO2

Qn		Solution	Content/Success	
			Criteria	
25	(a)	OQ = OS (radii of small circle)	I can determine if two	
		$\angle OQP = \angle OSR$ (radius \perp tangent)	triangles are o	congruent.
		$\angle POQ = \angle ROS$ (vert. opp. $\angle s$)	Content	L
		ΔOPQ is congruent to ΔORS (ASA congruency test)	Complexity	М
			Context	Н
		Alternatively,	Response	Н
		OQ = OS (radii of small circle)	Strategy	
		OP = OR (radii of big circle)	Assessment Objective	AO3
		$\angle PQO = \angle RSO$ (radius \perp tangent)	Objective	1105
		$\triangle OPQ$ is congruent to $\triangle ORS$ (RHS congruency test)		
	(b)	Let the radius of the small circle be $5r$	I can use ratio and percentage to find area of	
	(0)	POO = PSO (radius tangent)		
		1	circles and triangles.	
		Area of one shaded triangle = $- \times 5r \times 12r$		
		$=30r^{2}$	Contont	т
		Area of big circle = $\pi (13r)^2$	Complexity	
		$=169\pi r^2$	Context	H
		$2 \times 30r^2$	Response	M
		Percentage of shaded region = $\frac{2 \times 307}{169 \pi r^2} \times 100\%$	Strategy	
		60	Assessment	
		$=\frac{300}{169\pi} \times 100\%$	Objective	AO2
		=11.3% (3 s.f.)		
OR	[Let the radius of the small circle be r .		
		$PQ = \frac{12}{5}r$		
		$OP = \frac{13}{5}r$		
		\mathbf{c}		
		Area of one shaded triangle = $\frac{1}{2} \times r \times \left(\frac{12}{5}r\right)$		
		$=1.2r^{2}$		
		Area of big circle = $\pi \left(\frac{13}{5}r\right)^2$		
		$=6.76\pi r^2$		
		Percentage of shaded region = $\frac{2 \times 1.2r^2}{6.76\pi r^2} \times 100\%$		
		$=\frac{2.4}{6.76\pi} \times 100\%$		
		=11.3% (3 s.f.)		
		$=\frac{2.4}{6.76\pi} \times 100\%$ = 11.3% (3 s.f.)		