

LO: Define a hormone as a chemical substance, produced by a gland, carried by the blood, which alters the activity of one or more specific target organs and is then destroyed by the liver

Hormones are <u>chemical substances</u> produced by <u>endocrine glands in minute quantities</u>, <u>transported by blood plasma</u>, which <u>alters the activity of one or more target organs</u> and is <u>destroyed by the liver</u> and <u>excreted by the kidneys</u>.

LO: Explain what is meant by an endocrine gland, with reference to the islets of Langerhans in the pancreas

• Endocrine glands are <u>ductless</u> <u>glands</u> that <u>produces and releases</u> <u>hormones directly into the blood</u>.

• Eg. <u>Islets of Langerhans in the</u> <u>pancreas</u> are endocrine gland that produces and releases <u>insulin</u> and <u>glucagon</u> directly into the <u>blood</u> <u>plasma</u> to be transported to the <u>target</u> <u>organs</u> (e.g. <u>liver and muscles</u>) to <u>regulate blood glucose concentration</u>.

LO: State the role of the hormone adrenaline in boosting blood glucose levels and give examples of situations in which this may occur

- Stimulus: Situations that encounter fear, anger and anxiety
- Stimulates sensory receptors and transmit nerve impulses to the brain which transmits nerve impulses to the <u>effector</u>, <u>adrenal gland</u> which <u>produces and</u> <u>releases adrenaline</u> into the blood to prepare the body for fight/ flight response

Effects of adrenaline:

- Stimulates <u>liver and muscle cells to convert stored glycogen to glucose</u>, <u>increasing the blood glucose levels</u>
- <u>Increase in heart rate and blood pressure</u>, hence <u>more oxygen and glucose</u> is supplied to <u>muscles for higher rate of respiration to release more energy</u>
- Constriction of arterioles in skin to allow more blood to the muscle tissues
- <u>Rate of ventilation is increased</u> for <u>increased oxygen supply</u> for respiration and <u>removal of carbon dioxide</u>
- Increase in metabolic rate to release more energy during respiration
- Dilation of pupil to allow more light in to enhance vision

LO: Explain how the blood glucose concentration is regulated by insulin and glucagon as a homeostatic mechanism

Changes in blood glucose concentration <u>stimulates islets of Langerhans of pancreas</u> to secrete <u>more insulin /glucagon</u>

After a heavy meal:

- <u>Blood glucose concentration increases above normal</u> (stimulus)
- Stimulates islets of Langerhans of pancreas to secrete more insulin
- Insulin stimulates liver and muscle cells to convert excess glucose to glycogen
- Increase permeability of cells for glucose uptake
- Blood glucose concentration <u>decreases back to normal</u>

Starvation:

- <u>Blood glucose concentration decreases below normal</u> (stimulus)
- <u>Stimulates islets of Langerhans of pancreas to secrete more glucagon</u>

- Glucagon <u>stimulates liver and muscle cells</u> to convert stored <u>glycogen back to</u> <u>glucose</u>
- Stimulates conversion of lactic acid/amino acids/fats to glucose
- Blood glucose concentration increases back to normal

LO: Describe the signs, such as an increased blood glucose level and glucose in urine, and the treatment of diabetes mellitus using insulin

Signs of diabetes mellitus:

- Persistently high blood glucose level after a meal
- Presence of <u>high amount of glucose in urine</u>; increased in output of urine
- Slow healing of wounds

Type 1 diabetes mellitus: No/ insufficient insulin production **Type 2 diabetes mellitus:** Insulin resistance due to non-responsive receptors

Treatment of diabetes mellitus:

- Monitor their blood glucose concentrations and test their urine regularly (Type 1 and 2)
- Regulate carbohydrate content in their diet (Type 1 and 2)
- Injection of insulin (Type 1)

Compare the nervous system and endocrine system:

Name: _

Topic: Hormones

Similarities:

- Both have <u>receptors</u> that detect stimulus.
- Both involve transmission of a <u>signal</u> or <u>message</u>.
- Both involve an <u>effector/ target organ</u> that carries out a <u>response</u>.

Differences:

Nervous control	Endocrine control
Involves neurones	Involves hormones
Electrical and chemical transmission	Chemical transmission
Nerve impulses are transmitted by neurones	Hormones are transmitted by the blood
Rapid transmission and response	Slower transmission and relatively slow-acting
Often causes short-term effects	Can cause long-term or short-term effects
Voluntary or involuntary	Always involuntary
Usually localised response (to effector muscles only)	Usually widespread effects (many organs affected)