

JC1 H2 Mathematics (9758) Term 4 Revision Topical Quick Check Chapter 9 Maclaurin Series

Revision Guide Page 2

Section 1: Using Maclaurin's expansion (MF27):

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$$

Steps for use of Maclaurin's expansion

- 1) Through multiple implicit differentiation, obtain equations involving $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$,...
- Substitute x = 0 to obtain y. Subsequently, substitute x = 0 and y to obtain $\frac{dy}{dx}$.

 Continue with the substitutions to obtain $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$,....
- Substitute $y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots$ into $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$ [Note: f(0) refers to y when x = 0, f'(0) refers to $\frac{dy}{dx}$ when $x = 0, \dots$]

Revision Guide Page 4

Example 1: 2012 YJC/1/8

Objectives:

- 1. Finding Maclaurin Series using Differentiation (Implicit Differentiation).
- 2. Use of previous result and standard series.

It is given that $y = \ln(1 + \tan^{-1} 2x)$. Show that

(i)
$$\left(1+4x^2\right)\frac{dy}{dx} = 2e^{-y}$$
, [2]

(ii)
$$\left(1+4x^2\right) \left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right] + 8x\frac{dy}{dx} = 0.$$
 [2]

Hence find the Maclaurin series for y, up to and including the term in x^2 . [3]

Deduce the Maclaurin series for $y = \ln\left(\frac{1 + \tan^{-1} 2x}{1 - x}\right)$, up to and including the term in x^2 . [3]

1	Solution	
(i)	$e^{y} = 1 + \tan^{-1} 2x$ Diff. wrt. x:	Learning Point: Simplify the equation so that it is easier to differentiate
	$e^{y} \frac{dy}{dx} = \frac{1}{1 + 4x^{2}} (2)$ $(1 + 4x^{2}) \frac{dy}{dx} = 2e^{-y} \text{ (shown)}$	
(ii)	$(1+4x^2)\frac{dy}{dx} = 2e^{-y}$ Carry out implicit differentiation on the given result $(1+4x^2)\frac{d^2y}{dx^2} + 8x\frac{dy}{dx} = -2e^{-y}\frac{dy}{dx}$ $(1+4x^2)\frac{d^2y}{dx^2} + 8x\frac{dy}{dx} = -(1+4x^2)\left(\frac{dy}{dx}\right)^2$ $(1+4x^2)\frac{d^2y}{dx^2} + 8x\frac{dy}{dx} + (1+4x^2)\left(\frac{dy}{dx}\right)^2 = 0$ $(1+4x^2)\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right] + 8x\frac{dy}{dx} = 0 \text{(shown)}$	
	When $x = 0$, $y = 0$, $\frac{dy}{dx} = 2$, $\frac{d^2y}{dx^2} = -4$ $\therefore y = 2x - 2x^2 + \dots$ (*)	Use Maclaurin's expansion formula in MF27: $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + + \frac{x^n}{n!}f^{(n)}(0) +$
	$\ln\left(\frac{1+\tan^{-1}2x}{1-x}\right)$ $=\ln\left(1+\tan^{-1}2x\right)-\ln\left(1-x\right)$	'Deduce' : Relate to Maclaurin's series for $\ln(1+\tan^{-1}2x)$ found earlier
	$\approx \left(2x - 2x^2\right) - \left(-x - \frac{1}{2}x^2\right)$	For $\ln(1+\tan^{-1}2x)$: from (*) For $\ln(1-x)$: Use standard series for $\ln(1+x)$ in
	$=3x-\frac{3}{2}x^2$	MF27, and replace x by $-x$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots$

EJC Promo 9758/2022/Q2 1

It is given that $y = e^{2x} \cos x$.

(a) Show that
$$\frac{d^2y}{dx^2} = 4\frac{dy}{dx} - 5y$$
. [3]

- Find the Maclaurin series for y up to the term in x^2 . **(b)** [2]
- Hence, show that the Maclaurin series for $e^x \sqrt{\cos x}$ is $1 + x + \frac{1}{4}x^2$, up to the term (c)

in
$$x^2$$
. [2]

$$(a) \qquad y = e^{2x} \cos x$$

Differentiate using Product Rule

$$\frac{dy}{dx} = e^{2x} \left(-\sin x\right) + \left(\cos x\right) 2e^{2x}$$

$$\frac{dy}{dx} = -e^{2x} \sin x + 2y - - - - - - (1)$$

Rewrite your equation in terms of y using the substitution $y = e^{2x} \cos x$ given in the

Differentiate wrt *x*:

$$\frac{d^{2}y}{dx^{2}} = -e^{2x} (\cos x) - \sin x (2e^{2x}) + 2\frac{dy}{dx}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -y - 2\left(2y - \frac{\mathrm{d}y}{\mathrm{d}x}\right) + 2\frac{\mathrm{d}y}{\mathrm{d}x} \qquad \text{(From (1): } \mathrm{e}^{2x}\left(\sin x\right) = 2y - \frac{\mathrm{d}y}{\mathrm{d}x}\text{)}$$

$$\frac{d^2 y}{dx^2} = 4 \frac{dy}{dx} - 5y \text{ (shown)}$$
When $x = 0$,

(b)

$$y = y = e^{2(0)} \cos 0 = 1$$
,

$$\frac{dy}{dx} = -e^0 \sin 0 + 2(1) = 2$$
,

$$\frac{d^2y}{dx^2} = 4(2) - 5(1) = 3$$

Concept: Use Maclaurin Theorem to find the Maclaurin Series required

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^n}{n!} f^{(n)}(0) + \dots$$
 (in MF 27)

$$y = 1 + 2x + \frac{3}{2!}x^2 + \dots$$

$$=1+2x+\frac{3}{2}x^2+...$$

(c)
$$e^{x} \sqrt{\cos x} = \left(e^{2x} \cos x\right)^{\frac{1}{2}}$$
$$= \left(1 + 2x + \frac{3}{2}x^{2} + \dots\right)^{\frac{1}{2}}$$

Rewrite the expression such that the original expression $e^{2x} \cos x$ from (a) appears

See
$$\left(1+2x+\frac{3}{2}x^2...\right)^{\frac{1}{2}}$$
 as $\left(1+\left(2x+\frac{3}{2}x^2...\right)\right)^{\frac{1}{2}}$ and use the Binomial Expansion in MF27 $(1+x)^n=1+nx+\frac{n(n-1)}{2!}x^2+...+\frac{n(n-1)(n-2)...(n-r+1)}{r!}x^r+...$

$$=1+\frac{1}{2}\left(2x+\frac{3}{2}x^2\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(2x+\frac{3}{2}x^2\right)^2+\dots$$

$$=1+x+\frac{3}{4}x^2-\frac{1}{8}\left(4x^2+\dots\right)$$

$$=1+x+\frac{1}{4}x^2+\dots$$

Revision Guide Page 2

Section 2: Using Standard Series

Series expansion	Validity range
$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$	x < 1
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{r}}{r!} + \dots$	all x
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots$	all x
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots$	all x
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots$	$-1 < x \le 1$

Revision Guide Page 6

Example 3: 2011 NYJC Prelim/P1/3

Objectives:

- 1. Use of standard series (MF27) to find Maclaurin Series.
- 2. Use of Binomial Theorem when denominator is a polynomial (usually linear or quadratic).

By using standard series expansions, find the Maclaurin series for $f(x) = \ln(e^x \cos 2x)$ up to and including the term in x^2 . [3]

Given that the first two non-zero terms in the Maclaurin series for f(x) are equal to the first two non-zero terms in the series expansion of $\frac{2x}{a-bx}$, find a and b, where a and b are constants.

[4]

3	Solution	Use $\ln ab = \ln a + \ln b$	
	$f(x) = \ln(e^x \cos 2x)$	Ose $\text{II}(ab - \text{III}(a + \text{III})b)$	
	$= \ln e^{x} + \ln \left(\cos 2x\right)$ $= x + \ln \left(1 - \frac{\left(2x\right)^{2}}{2}\right)$	$\frac{1}{2}$ in teptace x by $2x$	
	$= x + \ln(1 - 2x^{2} +$ $= x - 2x^{2} +$		
		$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots$	
	$\frac{2x}{a-bx} = 2x(a-bx)^{-1}$		
	$= 2xa^{-1}\left(1 - \frac{b}{a}x\right)$ $= \frac{2}{a}x\left(1 - \frac{b}{a}x\right)^{-1}$	Make first term of the expansion 1 and use the standard series in MF27 $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + + \frac{n(n-1)(n-r+1)}{r!}$	
		[Expand till x^2 so as to compare the terms to find a and b]	
	$\frac{2x}{a - bx} \approx \frac{2}{a}x + \frac{2b}{a^2}x^2 = \frac{1}{a^2}$	$x-2x^2$	
	Comparing like terms: 2	$\frac{2}{a} = 1$ $\Rightarrow a = 2$	
	2	$\frac{2b}{a^2} = -2 \qquad \Rightarrow \qquad b = -a^2 = -4$	

2 MI PU2 P2 Promo 9758/2022/Q6(modified)

It is given that $y = \ln(\cos x)$.

- (i) Find the Maclaurin series for $\ln(\cos x)$ up to and including the term in x^4 . [2]
- (ii) Hence, by substituting $x = \frac{\pi}{3}$, show that $\ln 2 \approx \frac{\pi^2}{18} + \frac{\pi^4}{972}$. [2]

Q2	MI PU2 P2 Promo 9758/2022/Q6(modified)
(i)	$\ln(\cos x) = \ln\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right)$ Use the Standard Series of $\cos x$ in MF27 $= \ln\left(1 + \left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right) + \dots\right)$
	$= -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{\left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right)^2}{2!} + \dots$ Use the Standard Series of $\ln(1+x)$ and replace x by $-\frac{x^2}{2!} + \frac{x^4}{4!}$
(;;)	$= -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^4}{8}$ $= -\frac{x^2}{2} - \frac{x^4}{12} + \dots$
(ii)	Substitute $x = \frac{\pi}{3}$ into the Maclaurin series in (i):
	$\ln\left(\cos\frac{\pi}{3}\right) = -\frac{\left(\frac{\pi}{3}\right)^2}{2} - \frac{\left(\frac{\pi}{3}\right)^4}{12} + \dots$ Subst $x = \frac{\pi}{3}$ into both LHS and RHS of the Maclaurin Series.
	$ \ln\left(\frac{1}{2}\right) \approx -\frac{\pi^2}{18} - \frac{\pi^4}{972} $
	$\ln(2^{-1}) \approx -\frac{\pi^2}{18} - \frac{\pi^4}{972}$ $-\ln(2) \approx -\frac{\pi^2}{18} - \frac{\pi^4}{972}$ $\ln(2) \approx \frac{\pi^2}{18} + \frac{\pi^4}{972}$
	$-\ln(2) \approx -\frac{\pi^2}{18} - \frac{\pi^4}{972}$
	$\ln(2) \approx \frac{\pi^2}{18} + \frac{\pi^4}{972}$

Revision Guide Page 3

Section 4: The Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots + b^{n}$$

where *n* is a **POSITIVE INTEGER** and $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

When n is a **NEGATIVE INTEGER OR A FRACTION**, the binomial expansion of $(1+x)^n$

is an infinite series which is **valid only for** |x| < 1.

The following formula is given in the formulae list (MF27):

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots \text{ where } |x| < 1$$

Note: The coefficient of x^r must be written as $\frac{n(n-1)(n-2)...(n-r+1)}{r!}$

Revision Guide Page 7

Example 4

Objectives:

- 1. Use of Binomial Theorem when denominator is a polynomial (usually linear or quadratic).
- 2. Validity range of Binomial Theorem (MF27)

Expand $\frac{1-x}{2+x}$ in ascending powers of x up to and including the term in x^2 and state the set of values of x for which the expansion is valid. [6]

4	Solution	
	$\frac{1-x}{2+x} = (1-x) \times 2^{-1} \left(1 + \frac{x}{2}\right)^{-1}$ $= (1-x) \times \frac{1}{2} \left(1 + \frac{x}{2}\right)^{-1}$ $= \left(\frac{1}{2} - \frac{x}{2}\right) \left(1 - \frac{x}{2} + \left(\frac{x}{2}\right)^2 + \dots\right)$	Express as a product of two terms. Factorise $\frac{1}{2}$ such that we can use the standard series for $(1+x)^n$ where $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots, x < 1$ Expand till x^2 term
	$= \frac{1}{2} - \frac{1}{2}x - \frac{1}{4}x + \frac{1}{4}x^2 + \frac{1}{8}x^2 + \dots$ $= \frac{1}{2} - \frac{3}{4}x + \frac{3}{8}x^2 + \dots$	
	Range of validity of x: $\left \frac{x}{2} \right < 1 \Rightarrow -2 < x$	11016.
	Set of values of x : $\{x \in \mathbb{R} : -2 < x < 2\}$	Qn asks for Set Notation

3 ASRJC Promo 9758/2022/Q1

By finding the expansion of $(1+3x)^{-1}$ or otherwise, find the expansion of $\frac{\sqrt{1+2x}}{1+3x}$ in ascending powers of x, up to and including the term in x^2 . Find the range of values of x for which the expansion is valid.

Q3	ASRJC Promo 9758/2022/Q1	Rewrite the denominator as $(1+3x)^{-1}$ and	
	$\frac{\sqrt{1+2x}}{1+3x} = (1+2x)^{\frac{1}{2}} (1+3x)^{-1}$	use the Standard Series in MF27.	
		$\frac{1}{2} (2x)^{2} + \dots \left[(1 + (-1)(3x) + \frac{(-1)(-2)}{2!} (3x)^{2} \dots \right]$	
	$= \left(1 + x - \frac{1}{2}x^2 + \dots\right) \left(1 - 3x + 9x^2 \dots\right)$		
	$=1-3x+x-\frac{1}{2}x^2+9x^2-3$	$3x^2 + \dots$	
	$=1-2x+\frac{11}{2}x^2+$		
	Valid for $ 2x < 1$	and $ 3x < 1$	
	$-\frac{1}{2} < x < \frac{1}{2}$	and $-\frac{1}{3} < x < \frac{1}{3}$	
	$\therefore -\frac{1}{3} < x < \frac{1}{3}$		

Revision Guide Page 3

Section 3: Small Angle Approximation for Trigonometric Functions

For small x,

(a) $\sin x \approx x$

(b) $\cos x \approx 1 - \frac{1}{2}x^2$

(c) $\tan x \approx x$

Note: *x* must be in radian

Useful Pre-requisite knowledge:

- ✓ Sine rule
- ✓ Cosine rule
- ✓ Trigonometric Ratio
- ✓ Trigonometric Identities in MF27

Revision Guide Page 8

Example 5: 2016 HCI/I/10a

Objectives:

- 1. Use of small angle approximation to approximate trigonometric functions.
- 2. Use of Binomial Theorem when denominator is a polynomial (usually linear or quadratic).

In the triangle ABC, AB = x, BC = y, $AC = \frac{1}{6}$, angle $ABC = \frac{\pi}{6}$ radians and angle $ACB = \theta$ radians (see diagram).

(i) Show that
$$\frac{x}{y} = \frac{2\sin\theta}{\cos\theta + \sqrt{3}\sin\theta}$$
. [3]

(ii) Given that θ is sufficiently small, express $\frac{x}{y}$ as a cubic polynomial in θ . [3]

(i)
$$\frac{\sin \theta}{x} = \frac{\sin \left(\pi - \frac{\pi}{6} - \theta\right)}{y}$$
 Use sine rule
$$\frac{x}{y} = \frac{\sin \theta}{\sin \left(\frac{5\pi}{6} - \theta\right)}$$

$$\frac{x}{y} = \frac{\sin \theta}{\sin \frac{5\pi}{6} \cos \theta - \sin \theta \cos \frac{5\pi}{6}}$$
Refer to MF27 for sin (A-B)
$$\frac{x}{y} = \frac{\sin \theta}{\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta} = \frac{2 \sin \theta}{\cos \theta + \sqrt{3} \sin \theta} \text{ (shown)}$$

Note: Question asks for a <u>cubic polynomial</u>, so you cannot just use small angle approximation $\sin \theta \approx \theta$, you must use the Maclaurin's expansion for $\sin \theta$ to obtain up to θ^3 .

(ii)
$$\frac{x}{y} = \frac{2\sin\theta}{\cos\theta + \sqrt{3}\sin\theta}$$

$$\frac{x}{y} = \frac{2\left(\theta - \frac{\theta^3}{3!} + \dots\right)}{1 - \frac{\theta^2}{2} + \sqrt{3}\left(\theta - \frac{\theta^3}{3!} + \dots\right)}$$

$$\frac{x}{y} \approx 2\left(\theta - \frac{\theta^3}{3!}\right)\left(1 + \left(\sqrt{3}\left(\theta - \frac{\theta^3}{3!}\right) - \frac{\theta^2}{2}\right)\right)^{-1}$$

$$\frac{x}{y} \approx 2\left(\theta - \frac{\theta^3}{3!}\right)\left(1 + (-1)\left(\sqrt{3}\theta - \frac{\theta^2}{2}\right) + \frac{(-1)(-2)}{2!}\left(\sqrt{3}\theta - \frac{\theta^2}{2}\right)^2\right)$$

$$\frac{x}{y} \approx 2\left(\theta - \frac{\theta^3}{3!}\right)\left(1 - \sqrt{3}\theta + \frac{\theta^2}{2} + 3\theta^2\right)$$
Expand till θ^2 term
$$\frac{x}{y} \approx 2\theta - 2\sqrt{3}\theta^2 + \frac{20}{3}\theta^3$$

Expand till θ^2 term

4 MI PU2 P2 Promo 9758/2022/Q2

In triangle ABC, angle A is $\left(\frac{\pi}{4} + \theta\right)$ radians and angle B is $\frac{1}{3}\pi$ radians. Show that when θ is sufficiently small for terms in θ^3 and higher powers of θ to be neglected,

$$\frac{AC}{BC} \approx \frac{\sqrt{6}}{2} \left(1 - \theta + k\theta^2 \right)$$

where k is a constant to be found.

[6]

Use addition formula from MF27 to expand your denominator

$$= \frac{\left(\frac{\sqrt{3}}{2}\right)}{\sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta}$$
$$= \frac{\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{\sqrt{2}}(\cos\theta + \sin\theta)}$$
$$= \frac{\sqrt{6}}{2}(\cos\theta + \sin\theta)^{-1}$$

Therefore,

$$\frac{AC}{BC} \approx \frac{\sqrt{6}}{2} \left(1 - \frac{\theta^2}{2} + \theta \right)^{-1}$$

$$= \frac{\sqrt{6}}{2} \left(1 - \left(\frac{\theta^2}{2} - \theta \right) \right)^{-1}$$

$$= \frac{\sqrt{6}}{2} \left(1 + \left(\frac{\theta^2}{2} - \theta \right) + \left(\frac{\theta^2}{2} - \theta \right)^2 + \dots \right)$$

$$\approx \frac{\sqrt{6}}{2} \left(1 - \theta + \frac{\theta^2}{2} + \theta^2 \right)$$

$$= \frac{\sqrt{6}}{2} \left(1 - \theta + \frac{3}{2} \theta^2 \right) \qquad \Rightarrow k = \frac{3}{2}$$

For small x,

- (a) $\sin x \approx x$
- (b) $\cos x \approx 1 \frac{1}{2}x^2$

Answer Key

No.	Year	JC	Answers
1	2022	EJC	(b) $y \approx 1 + 2x + \frac{3}{2}x^2$
2	2022	MI	(i) $\ln(\cos x) = -\frac{x^2}{2} - \frac{x^4}{12} + \dots$
3	2022	ASRJC	$1 - 2x + \frac{11}{2}x^2 + \dots$ $-\frac{1}{3} < x < \frac{1}{3}$
4	2022	MI	$k = \frac{3}{2}$