Q1
 Suggested Answers

 For
$$(3-4k)x^2 + 2x - k < 0$$
,
 $3-4k < 0$ and $2^2 - 4(3-4k)(-k) < 0$
 $k > \frac{3}{4}$ and $4+12k-16k^2 < 0$
 $k > \frac{3}{4}$ and $4k^2 - 3k - 1 > 0$
 $k > \frac{3}{4}$ and $(4k+1)(k-1) > 0$
 $k > \frac{3}{4}$ and $k < -\frac{1}{4}$ or $k > 1$

 Combining solution on a number line, $k > 1$

Q2	Suggested Answers
(i)	$y = ax^3 + bx^2 + cx + d$
	At $(0,2)$, $d=2$
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx + c$
	Since $(0,2)$ is a maximum point, $c=0$
	$\left(-5, -\frac{119}{3}\right)$ is a minimum point,
	$3a(-5)^2 + 2b(-5) + c = 0$
	75a - 10b = 0 (1)
	$-\frac{119}{3} = a(-5)^3 + b(-5)^2 + 2$
	$125a - 25b = \frac{125}{3} (2)$
	Using GC, $a = -\frac{2}{3}$, $b = -5$
	Hence $y = -\frac{2}{3}x^3 - 5x^2 + 2$

(i)
$$\ln\left(\frac{e^{\sqrt{x}}}{(1-2x)^3}\right) = \sqrt{x} \ln e - 3\ln(1-2x) = \sqrt{x} - 3\ln(1-2x)$$
$$\frac{d}{dx} \ln\left(\frac{e^{\sqrt{x}}}{(1-2x)^3}\right) = \frac{d}{dx} \left(\sqrt{x} - 3\ln(1-2x)\right)$$
$$= \frac{1}{2}x^{-\frac{1}{2}} - 3\left(\frac{-2}{1-2x}\right)$$
$$= \frac{1}{2\sqrt{x}} + \frac{6}{1-2x}$$

(ii)
$$\int_{-1}^{e} \left(2\sqrt{x} - \frac{3}{\sqrt{x}}\right)^{2} dx$$

$$= \int_{-1}^{e} \left(4x - 12 + \frac{9}{x}\right) dx$$

$$= \left[2x^{2} - 12x + 9\ln|x|\right]_{-1}^{e}$$

$$= 2e^{2} - 12e + 9\ln e - (2 + 12 + 9\ln|-1|)$$

$$= 2e^{2} - 12e + 9 - 14$$

$$= 2e^{2} - 12e - 5$$

Q4	Suggested Answers
(i)	$y = 14x + 2e^{3-7x}$
	$\frac{dy}{dx} = 14 - 14e^{3-7x}$
	$0 = 14 - 14e^{3-7x}$
	$1 = e^{3-7x}$
	$\ln 1 = 3 - 7x$
	$x = \frac{3}{7}$
	$At x = \frac{3}{7},$
	At $x = \frac{3}{7}$, $y = 14\left(\frac{3}{7}\right) + 2e^{3-7\left(\frac{3}{7}\right)} = 6 + 2 = 8$
	Coordinates of turning point: $\left(\frac{3}{7}, 8\right)$
(ii)	NORMAL FLOAT AUTO REAL RADIAN MP
	$(0,2e^3)$
(iii)	$x = 1 \Rightarrow y = 14 + 2e^{-4} & \frac{dy}{dx} = 14 - 14e^{-4}$
	Equation of the tangent:
	$y - (14 + 2e^{-4}) = (14 - 14e^{-4})(x - 1)$
	$y = (14 - 14e^{-4})x - 14 + 14e^{-4} + 14 + 2e^{-4}$
	$y = \left(14 - 14e^{-4}\right)x + 16e^{-4}$
(iv)	Area required
	$= \int_0^1 14x + 2e^{3-7x} dx - \frac{1}{2} (1) (16e^{-4} + 14 + 2e^{-4})$

$$= \left[7x^{2} - \frac{2e^{3-7x}}{7}\right]_{0}^{1} - 7.1648$$

$$= 5.57 \text{ (3 s.f.)}$$
Alternative:
Area required
$$= \int_{0}^{1} 14x + 2e^{3-7x} dx - \int_{0}^{1} (14 - 14e^{-4})x + 16e^{-4} dx$$

$$= 5.57 \text{ (3 s.f.)}$$

Q5	Suggested Answers
(i)	h = 100 - 4r
	Volume of container, $V = \pi r^2 h$
	$=\pi r^2 \left(100-4r\right)$
	$=4\pi \left(25r^2-r^3\right)$
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi \left(50r - 3r^2\right)$
	For maximum volume, $\frac{\mathrm{d}V}{\mathrm{d}r} = 0$
	$4\pi \left(50r - 3r^2\right) = 0 \Longrightarrow 4\pi r \left(50 - 3r\right) = 0$
	$r = 0$ (rejected) or $r = \frac{50}{3}$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\frac{dV}{dr} $
	Slope / – \
	Hence $r = \frac{50}{3}$ gives a maximum volume of 29088.82 cm ³
	Alternative method d^2V
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 4\pi \left(50 - 6r\right)$
	When $r = \frac{50}{3}$, $\frac{d^2V}{dr^2} = -200\pi \implies r = \frac{50}{3}$ gives maximum volume of 29088.82 cm ³
(ii)	Amount of discarded metal = $100(40) - 2\pi r^2 - 40h$
	$=4000-2\pi r^2-40(100-4r)$
	$=160r-2\pi r^2$
	$=2\left(80r-\pi r^2\right)$
	Alternative method
	Amount of discarded metal = $2[(2r)(40) - \pi r^2]$
	$=2(80r-\pi r^2)$
L	

Q6	Suggested Answers
(i)	<u>Case 1: 5 boys, 0 girls:</u> No. of ways = ${}^{10}C_5 = 252$
	<u>Case 2: 4 boys, 1 girls:</u> No. of ways = $\binom{10}{4} \binom{15}{5} \binom{15}{5} = 3150$
	<u>Case 3: 3 boys, 2 girls:</u> No. of ways = $\binom{10}{5}\binom{15}{5} = 12600$
	Total no. of ways $= 252 + 3150 + 12600$
	=16002
(ii)	4!
	5C_2 ways to insert the Chairperson & Secretary such that there are exactly 2 students between them
	2! ways to arrange between Chairperson & Secretary
	4! ways to arrange the other 3 students and the Civics tutor
	Total no. of ways
	$=({}^{5}C_{2})(2!)(4!)$
	= 480
(ii)	Alternative: Complement method
	6! - (5!)(2!) = 480

Q7	Suggested Answers
(i)	Let X be the number of ripe apples, out of n .
	$X \sim \mathbf{B}(12, p)$
	Var(X) = 12p(1-p) = 1.53
	p = 0.15 (rejected as $0.5) or p = 0.85$
(ii)	$\therefore X \sim B(12, 0.85)$
	$P(X \ge 9)$
	$=1-P(X\leq 8)$
	= 0.90779 (5 s.f.)
	= 0.908 (3 s.f.)
(iii)	Let Y be the number of boxes with at least 75% of the apples being ripe, out of 20.
	$Y \sim B(20, 0.90779)$
	$P(13 < Y \le 18) = P(Y \le 18) - P(Y \le 13)$
	= 0.56062 (5 s.f.)
	= 0.561 (3 s.f.)
(iv)	Let T be the number of apples that are not ripe, out of 240 apples.
	$T \sim B(240, 0.15)$
	$P(T \le 30)$
	= 0.15995 (5 s.f.)
	= 0.160 (3 s.f.)
	<u>Alternative</u>
	Let T be the number of apples that are ripe, out of 240 apples.
	$T \sim B(240, 0.85)$
	$P(T \ge 210)$
	$=1-P(T\leq 209)$
	= 0.15995 (5 s.f.)
	= 0.160 (3 s.f.)

Q8	Suggested Answers
(i)	$P(B \mid A) = 0.7 \Rightarrow \frac{P(A \cap B)}{P(A)} = 0.7$
	$\Rightarrow P(A) = \frac{0.35}{0.7} = 0.5$
	$P(B) = P(A \cup B) - P(A) + P(A \cap B) = 0.9 - 0.5 + 0.35 = 0.75$
(ii)	$P(A' \cap B')$ represents the probability that both A and B do not occur.
	$P(A' \cap B') = 1 - P(A \cup B) = 1 - 0.9 = 0.1$
(iii)	$P(B \mid A) = 0.7 \neq P(B)$
	\therefore A and B are not independent.
	Alternative:
	$P(A)P(B) = (0.5)(0.75) = 0.375 \neq P(A \cap B)$
	\therefore A and B are not independent.

Q11	Suggested Answers
(i)	Unbiased estimate of population mean, $\bar{x} = \frac{141.68}{35}$ = 4.048 Unbiased estimate of population variance, $[141.68]^2$
	$s^{2} = \frac{1}{34} \left[573.74 - \frac{\left(141.68\right)^{2}}{35} \right]$ $= 0.0064518$ $= 0.00645$
(ii)	Let X be the random variable denoting the mass of a paperclip and μ the population mean mass. To test H_0 : $\mu=4$ at 1% level of significance H_1 : $\mu>4$

Under H_0 , since n = 35 is large, by Central Limit Theorem, $\overline{X} \sim N\left(4, \frac{0.0064518}{35}\right)$ approximately

$$Z = \frac{\overline{X} - 4}{\sqrt{\frac{0.0064518}{35}}} \sim N(0,1)$$

Using a one-tailed test, $\overline{x} = 4.048$ gives p-value = 0.00020364

Since p-value < 0.01, we reject H_0 and conclude that at 1% level of significance, there is sufficient evidence that the quality control officer's claim that the mass of paperclip is understated is justified.

- (iii) 1% level of significance means that there is a <u>probability of 0.01</u> of <u>wrongly concluding</u> the mean mass of paperclip is understated when it is not.
- (iv) Given $X \sim N(\mu, 0.08^2)$

To test H_0 : $\mu = 4$ at 1% level of significance

$$H_1: \mu > 4$$

Under H_0 , $\overline{X} \sim N\left(4, \frac{0.08^2}{n}\right)$

$$Z = \frac{\overline{X} - 4}{\frac{0.08}{\sqrt{n}}} \sim N(0,1)$$

Reject H_0 if $z_{cal} \ge 2.3263$

Since the quality control officer's claim is favoured, H_0 is rejected.

Hence
$$z_{cal} \ge 2.3263$$

$$\frac{4.048 - 4}{0.08 / \sqrt{n}} \ge 2.3263$$

$$\frac{0.048}{0.08}\sqrt{n} \ge 2.3263$$

$$\sqrt{n} \ge 3.877167$$

$$n \ge 15.032$$

Hence smallest n is 15

Q12	Suggested Answers
(i)	Let C denote the preparation time taken by Cassano for a randomly chosen order.
	$C \sim N(\mu, \sigma^2)$
	$\mu = \frac{10 + 12.8}{2} = 11.4$
	P(C < 12.8) = 0.782
	$\Rightarrow P(Z < \frac{12.8 - 11.4}{\sigma}) = 0.782$
	$\Rightarrow \frac{1.4}{2} = 0.77897$
	$\Rightarrow \sigma = 1.7973 \text{ (5 s.f.)} = 1.80 \text{ (3 s.f.)}$
(ii)	Let <i>V</i> denote the preparation time taken by Vincenzo for a randomly chosen order.
	$V \sim N(10.8, 1.2^2) \Rightarrow \overline{V} = \frac{V_1 + + V_5}{5} \sim N(10.8, \frac{1.2^2}{5})$
	$C \sim N(11.4, 1.8^2) \Rightarrow \overline{C} = \frac{C_1 + \dots + C_3}{3} \sim N\left(11.4, \frac{1.8^2}{3}\right)$
	$E(\overline{V} - \overline{C}) = E(\overline{V}) - E(\overline{C}) = -0.6$
	$\operatorname{Var}\left(\overline{V} - \overline{C}\right) = \operatorname{Var}\left(\overline{V}\right) + \operatorname{Var}\left(\overline{C}\right) = 1.368$
	$\overline{V} - \overline{C} \sim N(-0.6, 1.368)$
	$P(\overline{V} - \overline{C} < 1.5) = P(-1.5 < \overline{V} - \overline{C} < 1.5)$
	= 0.74291 (5 s.f.)
	= 0.743 (3 s.f.)
(iii)	Let <i>I</i> denote the duration of each break, in minutes.
	$I \sim N(1.5, 0.4^2)$
	Let $T = V_1 + + V_5 + C_1 + + C_5 + I_1 + + I_9$
	$E(T) = 5(10.8) + 5(11.4) + 9(1.5) = 124.5$ $V_{TT}(T) = 5(1.2^2) + 5(1.2^2) + 9(0.4^2) = 24.84$
	$Var(T) = 5(1.2^{2}) + 5(1.8^{2}) + 9(0.4^{2}) = 24.84$ $T = N(124.5, 24.84)$
	$T \sim N(124.5, 24.84)$
	P(T > 120) = 0.81671 (5 s.f.) = 0.817 (3 s.f.)
(iv)	Required probability
	$= \left[P(T > 120) \right]^2$
	$=(0.81671)^2$
	= 0.66702 (5 s.f.)
	= 0.667 (3 s.f.)
(v)	The event in (iv) is a subset of the event that a total of more four hours is needed for both chefs to complete 20 orders in the lunch and dinner shifts.