 <u>Speed of reaction</u> how fast or how slow a reaction is do an experiment to measure change over a period of time (equations): amt of reactant used up / time taken amt of product obtained / time taken vol of gas produced / time taken Experiment notes: H2 is given off: use gas syringe - H2 is very light and the change is minimal leading to unreliable results CO2 given off: mass change - CO2 is a heavier gas Cotton wool: allow gas to escape and prevent solution from splashing Graphs of mass- does not reach zero 	Collision theory: - for a reaction to take place, there must be a collision between reactant particles, some are unsuccessful. - a successful collision is one where the colliding particles have enough <u>energy</u> to react (minimum activation energy) Catalyst (usually transition metals / oxides): = a substance that speeds up a chemical reaction, without being used up itself - change the speed of reaction, <u>not</u> the yield of product obtained - small amounts → significant effects Industry use: reduce fuel bills if the reaction is fast enough at lower temperature note: catalysts lower the activation energy of a reaction
 Factors: 1. Particle size the smaller the size, the faster the reaction smaller particle size = larger total surface area for collision of the particles = higher frequency of collision = higher frequency of effective collision application: coal dust burns faster than large pieces of coal = powdered coal is used in modern coal-burning power stations explosions can occur if the air contains too much coal dust (sparks from machinery causes explosion) = remove dust by spraying water 2. Concentration the higher the concentration, the faster the reaction higher concentration = greater number of reactant particles in a unit volume = higher frequency of collision = higher frequency of effective collision 	 3. Pressure the higher the pressure, the faster the speed of reaction higher pressure = particles are closer together = higher frequency of collision = higher frequency of effective collision 4. Temperature the higher the temperature, the faster the reaction higher temperature = particles possess more ke = move at higher speeds and collide with each other with greater force = greater number of particles with the minimum activation energy = higher frequency of collision = higher frequency of effective collision

Heat of reaction (energy change) Enthalpy change: the amount of energy absorbed or released in a chemical reaction carried out under constant pressure AH = HEAT ABSORBED DURING BOND BREAKING- HEAT RELEASED DURING BOND FORMING	Exothermic reactions - gives out heat to the surroundings (feels hot) Characteristics: - temp of surroundings increase - products have less energy than reactants - negative ΔH (temp increases rapidly after the reaction begins as heat energy is given off to the environment, temp falls gradually after reaction is complete and returns to room temp) *the total amount of energy absorbed in breaking the bonds in the reactants is LESS THAN the total amount of energy released from bond forming in the products	Endothermic reactions - takes in heat from surroundings (feels cold) Characteristics: - temp of surroundings decrease - products have higher energy than reactants - positive ΔH (temp decreases rapidly after the reaction begins as heat energy is taken in from the environment, temp gradually increases after reaction is complete and returns to room temp) *the total amount of energy absorbed in breaking the bonds in the reactants is MORE THAN the total amount of energy released from bond forming in the products
	Examples (exothermic)	Examples (endothermic)
Energy	- Nuclear fission, large atomic nucleus, such as	- mermai decomposition of carbonate and mitrate saits
Reactants	 Combustion; use of oxygen to burn fuel Neutralisation; free moving aq hydrogen and 	 Dissolving crystals of potassium of animonial saits in water Photography; light falls on silver bromide and agitate
Departments	hydroxide ions come together and form bonds	an electron in Br- and causes it to move to Ag+ causing
	- Respiration; use of oxygen to burn glucose	the compound to break up and form dark areas on the
Progress of reaction	C6H12O6 + 6 O2 -> 6 CO2 + 6 H2O + energy	film
[^] catalyst reduces the	- Converting anhydrous salt to hydrated salt;	2AgBr (underlight) -> Br2 + 2Ag (redox)
activation energy needed	Cu5O4 + H2O -> Cu5O4.5H2O Haber process: manufacture ammonia	$= PHOLOSYNTHESIS;$ $= 6 CO2 \pm 6 H2O = 5 C6H12O6 \pm 6 O2$
Catalyst: speeds up the rate	- Contact process: $2 \text{ SO2} + \text{O2} - \text{SO3}$	(nhysical process)
of reaction while remaining	(physical process)	- evaporation, melting, dissolving some jonic compounds
chemically unchanged at	- condensation, freezing, dissolving of anhydrous	
the end of the reaction	salt/acids	

Redox reaction - a reaction where both reduction and oxidation takes place concurrently		ion where on and kes rrently	Explanation: Oxidation - increase in oxidation state* - lose hydrogen	Oxidising agent (OA): a substance that causes another substance to be oxidised while itself being reduced Reducing agent (RA): a substance that causes another substance to be reduced while itself being oxidised			
0		R	 gain oxygen loss of electrons Reduction decrease in oxidation state* gain hydrogen lose oxygen gain in electrons 	OA	Test for RA	RA	Test for OA
+	s	-		oxygen, ozone		hydrogen	
-	н	+		halides* lodine solution	Brown to colourless (I- ions) oxidizing power of halogens decreases down the group	sulfur dioxide, hydrogen sulfide	
-	E	+		copper(II) oxide**	low reactive metal + O2 (easily lose O2 to other compounds)	Carbon, CO	
S: oxidation state H: hydrogen O: oxygen E: electrons* it is (oxidised/reduced) as the oxidation state of (increase/decrease) from (+/-) in to (+/-) in		state	* it is (oxidised/reduced) as the oxidation state of	Acidified KMnO4	Purple to colourless	metals***	reducing ability of group I metals increases down the group
		Acidified K2Cr2O7	Orange to green	Acidified FeSO4	Green to yellow or orange or brown (Fe3+ ions)		
				Fresh FeCl3	Yellow to green (Fe2+ ions)	Acidified KI	Colourless to brown (I2 aq)
				H2O2	ALSO RA	Conc HCI	CI2 formed
1							