Mark scheme 2023 HL Prelim P1 P2

Question	1	2	3	4	5	6	7	8	9	10
Answer	D	С	D	Α	В	D	В	В	В	Α
Question	11	12	13	14	15	16	17	18	19	20
Answer	Α	Α	D	В	Α	D	D	В	С	D
Question	21	22	23	24	25	26	27	28	29	30
Answer	В	С	D	С	С	D	D	С	В	D
Question	31	32	33	34	35	36	37	38	39	40
Answer	Α	C	С	Α	C	В	В	Α	С	С

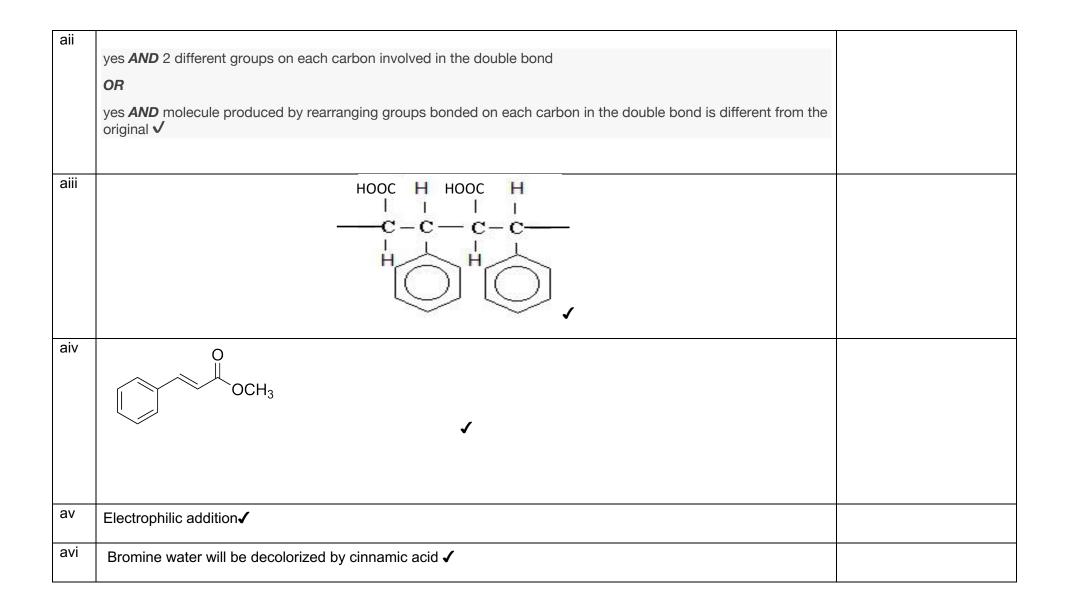
Qn	Mark scheme	Remark
1a	chromium: $n(Cr) = \frac{68.4g}{52.00 g mol^{-1}} = 1.32 mol$	
	OR	
	oxygen: $n(O) = \frac{31.6}{16.00} = 1.98 \text{ mol } \checkmark$	
	ratio n(Cr) : n(O) = 1.32 : 1.98 = 1 : 1.5 = 2 : 3	
	empirical formula: Cr₂O ₃ ✓	

	Let the molecular formula be Cr _{2x} O _{3x} .	
	156 = 2(52.00)x + 3(16.00)x	
	x = 1	
	molecular formula: Cr₂O₃ ✓	
	Allow ecf for empirical and molecular formula.	
	Award [3] for correct final answer.	
1b i	«promoted» electrons fall back to lower energy level✔	
	Energy difference between levels is different√	
1bii	Accept "Cu, Ca and Cr have different nuclear charge" for M2	
	energy levels are closer together at high energy / high frequency / short wavelength \checkmark	
1bili	IE = ΔE = hv = 6.63 × 10 ⁻³⁴ J s × 1.64 × 10 ¹⁵ s ⁻¹ = 1.09 × 10 ⁻¹⁸ J \checkmark	
1ci	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹	
	<i>OR</i> 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ ✓	
	Do not accept condensed electron configuration like [Ar] 3d ⁵ 4s ¹	
1cii	Both are paramagnetic.✓	
	«both» contain unpaired electrons	
	<i>OR</i> each chromium atom has 6 unpaired electrons and each chromium(III) ion has 3 unpaired electrons. ✓	
	Accept orbital diagrams showing unpaired electrons.	

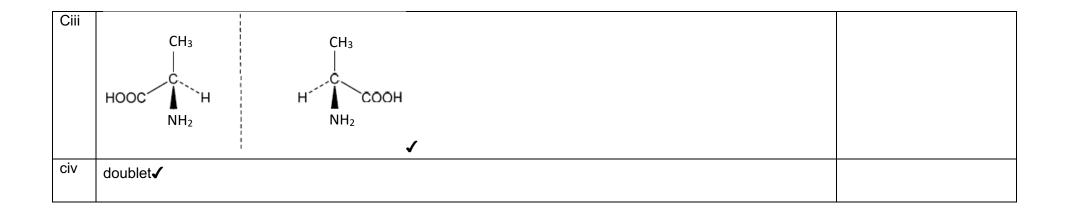
1ciii	H ₂ O is LB as it donates electron pair OR	
	Cr ³⁺ is LA as it accepts electron pair	
iv	Any THREE from:	
	partially filled d-orbitals	
	ligands/water cause d-orbitals to split	
	red light is absorbed as electrons move to a higher energy orbital «in d–d transitions» OR	
	light is absorbed as electrons are promoted	
	«green» colour observed is the complementary colour «of red»	
2ai.	$CH_4 (g) + 2O_2 (g) \rightarrow CO_2 (g) + 2H_2O (I)$ \checkmark	
aii.	[(-393.50 + (2 x - 285.8) - (-74.0)]; -891.1 < <kjmol<sup>-1>>\checkmark</kjmol<sup>	Award 2m for correct final answer; Award 1 m for <<+>> 891.1 kJmol ⁻¹
aiii.	BE assume all bonds are in gaseous state / H_2O formed is in liquid form for literature value/ OWTTE \checkmark	
bi.	Methane AND tetrachloromethane is non-polar AND Dichloromethane is polar; 🗸	
	C-CI bond is polar < <c-h bond="" is="" non-polar="">>;✔</c-h>	
	In dichloromethane, dipole moment/bond polarities does not cancel out OR	
	In tetrachloromethane, dipole moment/bond polarities cancels out; V	
bii.	London dispersion forces is stronger in tetrachloromethane due to greater number of electrons << larger molecular	
	mass>>V	
biii.	Methane cannot form hydrogen bond/favourable intermolecular forces of attraction/interaction with water.	
ci.	(3 x 498) – (4 x O-O in ozone) = <<+>> 285.4; ✓	Award 2m for correct
	(O-O in ozone) = << [(3 x 498) - 285.4] / 4 >> = <<+>> 302 < <kj>>√</kj>	final answer

_ !!		
cii.		
	FC (-1 +1 0) ✓	
ciii.	< <bond bond="" but="" double="" energy="" greater="" is="" o="O" o-o="" single="" than="" weaker="">></bond>	
	Both bonds are identical in bond length << due to resonance>>, longer than O=O single bond AND shorter than O-O single bond; ✓	
	Bond order is 1.5/ between 1 and 2√	
di.	ΔH_1^{Θ} : enthalpy change of formation < <of mgo="">> \checkmark</of>	
	ΔH_2^{Θ} : lattice energy << of MgO>> \checkmark	
dii.	$3791 = 602 + 249 + 148 + 738 + 2^{nd}$ IE + 612; \checkmark	Award 2m for correct final answer
	2^{nd} IE = <<+>> 1442 < <kj mol<sup="">-1>>\checkmark</kj>	Award 1m for -1442
diii.	2 nd IE more endothermic than 1 st IE as it is more difficult/ energy needed to remove an electron from a cation/	
	OWTTE√	
div.	Down the group, lattice enthalpy decreases/less endothermic; 🗸	
	Radius of M ²⁺ increases; ✓	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>

3a	(i) (ii)	
	FI Time FI INO	
b	Pressure/Concentration of NO will double ; 🗸 rate increases by 4 times; 🗸	
С	Rate = k [NO] ² mol dm ⁻³ s ⁻¹ = k (mol dm ⁻³) ² units of k = mol ⁻¹ dm ³ s ⁻¹ ; \checkmark	
d	Increases in < <average>> kinetic energy of the particles; \checkmark More particles have energy > E_a; \checkmark</average>	
	Increase in frequency of effective collisions ; ✓	
4ai	C ₅ H ₅ N + HCI → C ₅ H ₅ NHCI/ C ₅ H ₅ NH ⁺ Cl ⁻ \checkmark	
aii	pyridinium ion is a Brensted-Lowry acid as it the conjugate acid of the weak Brensted base, pyridine. / pyridinium ion is a Brensted-Lowry acid as it can act as a pro <i>ton donor.</i> V	


bi	C ₅ H ₅ NH ⁺ Cl ⁻ + NaOH → C ₅ H ₅ N + NaCl + H ₂ O Amount of C ₅ H ₅ N = 25.00/1000 x 0.100 = 2.50 x 10 ⁻³ < <mol>>√</mol>	Award [4] for correct final answer.
	Concentration of C ₅ H ₅ N at the equivalence point = 2.50×10^{-3} / (50.00/1000)	
	$= 0.0500 << mol dm^{-3} >> \checkmark$ $C_5H_5N + H_2O \rightleftharpoons C_5H_5NH^+ + OH^-$	
	$K_{b} = \underline{[C_{5}H_{5}NH^{+}][OH^{-}]}$ $[C_{5}H_{5}N]$	
	$1.4 \times 10^{-9} = \frac{[OH^{-}]^2}{0.0500}$	
	[OH-] = 8.367 x 10 ⁻⁶ < <mol dm<sup="">-3>>✔</mol>	
	pOH =5.08 pH = 14 -pOH= 8. 92√	

bii	14 7	ECF (acid or base) from
	13-	a(ii)
	12-	
	10-	
	9-	
	8-	
	pH 7-	
	6-	
	5-	
	4-	
	3-4	
	2-	
	1_	
	25.00	
	Volume of NaOH added/ cm ³	
	non-symmetrical sigmoidal curve, starting pH 2–7 AND terminating pH>12 V	
	equivalence point pH approximately 8.92 AND at a volume 25.00 cm ³ \checkmark	
С	(I) The position of the equilibrium will shift to the right hand side with the	
	smaller number of moles of gaseous particles to decrease the total pressure \checkmark	
	(II) The position of the equilibrium remains unchanged as the rates of the forward and backward reactions are	
	increased by the same extent. V	
di	Yield is very small as POE lies to the left/equilibrium constant is <<1/very small number. \checkmark	
dii	$\Delta G = -RT \ln K = -8.31 \times 500 \times \ln (3.80 \times 10^{-16}) \checkmark = <<+>148 000 \text{ J mol}^{-1} = <<+>148 \text{ kJ mol}^{-1} \checkmark$	[1] for correct working
	$ \Delta G - (11) (11) - (0.5) \times 500 \times 10^{-1} (0.00 \times 10^{-1}) = (-140 \times 10^{-1}) = (-$	[1] for conversion to kJ


Left electrode is anode AND right electrode is cathode√	
Electrons through the wires/ cables; 🗸	
lons towards the electrodes in the electrolyte/cation towards cathode and anion towards anode \checkmark	
Cathode: $Pb^{2+} + 2e_{-} \rightarrow Pb$ \checkmark	[1] for reversed
Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$	equations at electrodes
	Accept if student shows reduction of OH^- instead of H_2O
$Pb^{2+} + H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + Pb$	
OR	
$2Pb^{2+} + 2H_2O \rightarrow O_2 + 4H^+ + 2Pb\checkmark$	
Hydrogen gas would be formed at cathode/ water will be reduced at cathode ; \checkmark	
Reduction potential of water is less negative (-0.83V) than manganese (-1.18V) 🗸	
	Electrons through the wires/ cables; \checkmark lons towards the electrodes in the electrolyte/cation towards cathode and anion towards anode \checkmark Cathode: $Pb^{2^+} + 2e \rightarrow Pb \checkmark$ Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e \checkmark$ $Pb^{2^+} + H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + Pb$ OR $2Pb^{2^+} + 2H_2O \rightarrow O_2 + 4H^+ + 2Pb\checkmark$ Hydrogen gas would be formed at cathode/ water will be reduced at cathode ; \checkmark

6a	Signals : 2√ Ratio: 9:3 or 3:9 or 3: 1 or 1:3√
b	Any one of the following: $ \begin{array}{c} $
ci	$HNO_{3} + 2H_{2}SO_{4} \rightleftharpoons H_{3}O^{+} + NO_{2^{+}} + 2HSO_{4^{-}}\checkmark$ $Accept: HNO_{3} + H_{2}SO_{4} \rightleftharpoons NO_{2^{+}} + HSO_{4^{-}} + H_{2}O.$ $Accept: HNO_{3} + H_{2}SO_{4} \rightleftharpoons H_{2}NO_{3^{+}} + HSO_{4^{-}}.$ $Accept single arrow instead of equilibrium sign.$ $Accept equivalent two step reactions in which sulfuric acid first behaves as strong acid and protonates nitric acid, before behaving as dehydrating agent removing water from it.$

cii 7ai	$H_{3}C \longrightarrow (CH_{3}) \longrightarrow $	Accept mechanism with corresponding Kekulé structures. Do not accept a circle in M2 or M3. Accept first arrow starting either inside the circle or on the circle. If Kekulé structure used, first arrow must start on the double bond. M2 may be awarded from correct diagram for M3. M4: Accept "C ₆ H ₅ (CH ₃) ₃ NO ₂ +H ₂ SO ₄ " if HSO ₄ - used in M3.
	Absence of << strong, very broad band >>peak at 2500–3000 «cm-1»/peak due to O–H/hydroxyl in carboxylic	
	acids	

avii		
	ОН	
	Reagents: acidified «potassium» dichromate«(VI)»/H ⁺ or $K_2Cr_2O_7/H^+$ or $Cr_2O_7^{2-}/H^+$	
	Accept acidified < <potassium» <math="" manganate(vii)="">H^+ and KMnO₄ /H^+ and MnO₄⁻</potassium»>	
	Accept H_2SO_4 or H_3PO_4 for H^+ . Accept "permanganate" for "manganate(VII)".	Accept heat
	Condition : reflux 🗸	
b		
	< <intermolecular>> hydrogen bonding</intermolecular>	
	Accept diagram showing hydrogen bonding✔	
сі	Trigonal pyramidal; 🗸	
	sp³ ✔	
Cii	A AND it has a chiral centre/asymmetric carbon atom/carbon with 4 different substituents ✓	

