PHYSICS

SUGGESTED MARK SCHEME Maximum Mark: 190

Question	Key	Question	Key	Question	Key
1	В	6	С	11	В
2	D	7	В	12	Α
3	D	8	Α	13	Α
4	Α	9	D	14	В
5	С	10	В	15	В
16	Α	21	Α	26	D
17	С	22	В	27	С
18	С	23	Α	28	D
19	D	24	В	29	Α
20	С	25	В	30	D

Notes:

Candidates found Questions 8, 16, 19, 22 and 24 more challenging.

Question 8

distractor \mathbf{B} – did not account for two ropes

distractor \boldsymbol{C} – confused the air densities

distractor **D** – did not account for the weight of air inside the balloon

Question 11

Takes 1 hour (3600 s) for a minute hand to complete one revolution.

Question 14

Note that line MN is NOT an isothermal change. Using PV = nRT, temperature is decreasing.

Question 16

Note that the energy of the oscillations reduced by E / 4 rather than to E / 4.

Question 19

Single slit equation accounts for only one side of the central maximum. The width of the central maximum is double of this.

Question 24

Note that the question asks for potential difference, not potential.

Paper 2 Structured Questions

Notes:

Candidates need to take care with definitions and make sure that all detail is included, and correct scientific language is used, especially in definitions. Stronger candidates used the word 'per' to indicate the division of two quantities.

In 'show that' questions, stronger candidates made each step in the logic of the proof or calculation clear in order to show how to achieve the formula or answer.

Stronger responses were often short and pertinent to the question asked.

Qns		Marks
1(a)	the cyclist exerts a forward driving force which equals in magnitude and opposite to the frictional force. (weight of the cyclist is equal in magnitude and opposite in direction to the normal contact force from the horizontal ground)	B1
	By Newton's 1st law, the cyclist continues at constant velocity since there is no resultant force	B1
1(b)	$F = \frac{1}{2}c_{\rm D}\rho Av^{2}$ $v = \sqrt{\frac{2F}{c_{\rm D}\rho A}}$ $= \sqrt{\frac{2(22)}{(0.88)(1.2)(0.32)}} = 11.4109 \text{ m s}^{-1}$ Method 1 $\Delta v = \frac{1}{2}(v_{\rm max} - v_{\rm min})$ $= \frac{1}{2}\left(\sqrt{\frac{2(24)}{0.87(1.1)(0.3)}} - \sqrt{\frac{2(20)}{(0.89)(1.3)(0.34)}}\right)$	M1 M1
	= 1.4 (2 s.f.) Method 2 $\Delta V = 1 \Delta F = 1 \Delta c_{\rm D} = 1 \Delta \rho = 1 \Delta A$	

 $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta F}{F} + \frac{1}{2} \frac{\Delta c_{\rm D}}{c_{\rm D}} + \frac{1}{2} \frac{\Delta \rho}{\rho} + \frac{1}{2} \frac{\Delta A}{A}$ $\Delta v = \frac{1}{2} \left(\frac{2}{22} + \frac{0.01}{0.88} + \frac{0.1}{1.2} + \frac{0.02}{0.32} \right) (v)$ $= \frac{1}{2} \left(\frac{2}{22} + \frac{0.01}{0.88} + \frac{0.1}{1.2} + \frac{0.02}{0.32} \right) (11.4109)$ = 1.4 (2 s.f.)M1

$$v = 11 \pm 1 \text{ m s}^{-1}$$
 A1
Notes: one s.f. for the final uncertainty in v

Qns		Marks
1(c)(i)	Work done = force x displacement in the direction of force Power = work done/time Power = (force ×displacement)/time Power = force × velocity	B1 B1
1(c)(ii)	P = Fv = $\left(\frac{1}{2}c_{\rm D}\rho Av^2\right)v$ = $\frac{1}{2}c_{\rm D}\rho Av^3$ = $\frac{1}{2}(0.88)(1.2)(0.32)(11.4)^3$	01
	= 250W	A1

Qns	
2(a)	work done per unit mass
	in bringing a small test mass
	from infinity to that point in the field
	2(a)

2(b)

-

$$\Delta \boldsymbol{E}_{p} = \frac{-\boldsymbol{G}\boldsymbol{M}_{\text{Earth}}\boldsymbol{m}_{\text{satellite}}}{r_{\text{orbit}}} - \frac{-\boldsymbol{G}\boldsymbol{M}_{\text{Earth}}\boldsymbol{m}_{\text{satellite}}}{r_{\text{surface}}}$$
$$= -\boldsymbol{G}\boldsymbol{m}_{\text{satellite}} \left(\frac{\boldsymbol{M}_{\text{Earth}}}{r_{\text{orbit}}} - \frac{\boldsymbol{M}_{\text{Earth}}}{r_{\text{surface}}}\right)$$
$$= -(1600)(6.67 \times 10^{-11})(6.0 \times 10^{24})\left(\frac{1}{2.7 \times 10^{7}} - \frac{1}{6400 \times 10^{3}}\right)$$
C1

$$= 7.6 \times 10^{10} \text{ J}$$

2(c)(i) gravitational force provides centripetal force

$$\frac{GMm}{r^2} = \frac{mv^2}{r}$$
$$\frac{GMm}{r^2} \times \frac{r}{2} = \frac{mv^2}{r} \times \frac{r}{2}$$
$$\frac{GMm}{2r} = \frac{1}{2}mv^2 = E_k$$
B1

Notes: Show algebra with all the steps clearly set out. In 'show that' questions, all the steps are required.

$$E_{k} = \frac{GMm}{2r}$$

$$= \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})(1600)}{2(2.7 \times 10^{7})}$$

$$= 1.19 \times 10^{10} \text{ J}$$
A1

2(c)(iii) equation only applicable for masses in orbit, where the only force on the satellite is gravitational force which provides the centripetal force

on the surface, the centripetal force is provided by the difference between M1 weight and normal contact force from surface on satellite. Hence the satellite is not in orbit and hence expression is not applicable

not correct

A1

Marks B1

B1

B1 for each correct section

Qns		Marks
4(a)	spreading of waves (towards geometric shadow) after passing through aperture or around an obstacle Notes: Do not use "bending of waves"	A1
4(b)	 waves of same type must meet and overlap waves from sources must be coherent (OR have constant phase difference) if waves are transverse, they must be either unpolarised or polarised in the <u>same plane</u> for good contrast, waves should have approximately same amplitudes 	B2
4(c)(i)	$x/10^{-3}m \xrightarrow{9}{} 0$	
	gradient = $\frac{y_1 - y_2}{y_1 - y_2} = \frac{(8.8 - 4.4) \times 10^{-3}}{2.3 \times 10^{-3}} = 4.4 \times 10^{-3}$	M1
	$x_1 - x_2 = 2.0 - 1.0$	
	$\left(\frac{a}{a}\right)^{-4.4 \times 10^{-3}} (0.12 \times 10^{-3}) = 5.3 \times 10^{-7} \text{ m}$	Δ1

Qns		Marks
4(c)(ii)	$I \propto A^2$	M1
	$\frac{\max I \text{ of CBF}}{I \text{ of first dark fringe}} = \left(\frac{A_{\text{source}} + \frac{1}{2}A_{\text{source}}}{A_{\text{source}} - \frac{1}{2}A_{\text{source}}}\right)^2$	M1
	= 9.0	A1

5(a)

$$I = \frac{Q}{t}$$

$$Q = It = (Anvq)t = \left(\pi \left(\frac{d}{2}\right)^2 nvq\right)t$$

$$= \left(\pi \left(\frac{0.38 \times 10^{-3}}{2}\right)^2 (5.9 \times 10^{28}) (7.2 \times 10^{-5}) (1.6 \times 10^{-19})\right) (30 \times 60)$$
A1

5(b)(i)1.
$$f = \frac{\omega}{2\pi} = \frac{120\pi}{2\pi} = 60 \text{ Hz}$$
 A1

5(b)(i)2.
$$V_{\rm rms} = \frac{V_0}{\sqrt{2}} = \frac{9.0}{\sqrt{2}} = 6.4 \text{ V}$$

5(b)(ii)1.
$$R_{\text{total}} = 12 + \left(\frac{12(6)}{12+6}\right) = 16 \Omega$$
 C1

$$I_0 = \frac{V_0}{R_{\text{total}}} = \frac{9}{(16)}$$
 M1
= 0.56 A

5(b)(ii)2.
$$I_{total} = I_1 + I_2$$

 $0.56 = \frac{V}{6.0} + \frac{V}{12}$
 $V = 2.24V$
 $\langle P \rangle = \frac{P_0}{2} = \frac{V_0^2}{2R}$
 $= \frac{(2.24)^2}{2(6.0)}$
 $= 0.42 \text{ W}$

Qns		Marks
6(a)	Magnetic flux density is	B1
	the force acting per unit current	
	per unit length on a wire	
	carrying a current that is normal to the magnetic field.	

Notes: marks are lost if it is stated as "unit current" instead of "per unit current".

6(c)
$$B = \mu_0 n I$$

$$= \mu_0 \left(\frac{N}{L}\right) \left(\frac{V}{R}\right) = \mu_0 \left(\frac{N}{Nd_{wire}}\right) \left(\frac{V}{R}\right) = \mu_0 \left(\frac{1}{d_{wire}}\right) \left(\frac{V}{R}\right)$$
C1

$$= (4\pi \times 10^{-7}) \left(\frac{1}{0.46 \times 10^{-3}}\right) \left(\frac{24}{6.68}\right)$$

= 9.8 × 10⁻³ T A1

6(d) direction of current <u>parallel to the magnetic field</u> generate by the solenoid A1 zero

6(b)

Marks

A1

Notes: "not perpendicular" does not mean parallel

7(a)a discrete packet of energy of electromagnetic radiation
energy of one photon = Planck constant x frequencyB17(b)electrons in gas atoms/molecules interact with photons
photon energy causes electron to move to higher energy level (or to be excited)
photon energy = difference in energy of electron energy levelsB1

when electrons de-excite, photons re-emitted in all directions B1

7(c)(i)
$$E = \frac{-13.6}{n^2} = \frac{-13.6}{2^2} = -3.40 \text{ eV}$$

$$\Delta E = \left(\frac{-13.6}{3^2} - \frac{-13.6}{2^2}\right) \left(1.6 \times 10^{-19}\right) = 3.022 \times 10^{-19} \text{ J}$$

$$\Delta E = \frac{hc}{2}$$

$$3.022 \times 10^{-19} = \frac{\left(6.63 \times 10^{-34}\right) \left(3.00 \times 10^{8}\right)}{\lambda}$$
 M1

$$\lambda = 6.58 \times 10^{-7} \text{ m}$$
 A1

©EJC 2021

Marks

Qns

8(a)

assuming uniform deceleration,

 $v^{2} = u^{2} + 2as$

deceleration =
$$17 \text{ m s}^{-2}$$

8(b)(i)

$$a = \frac{v^2}{r}$$

$$v_{\max} = \sqrt{ar} = \sqrt{4gr}$$
 M1
= $\sqrt{4(9.81)(30)}$

$$= \sqrt{4(3.01)(30)}$$
 A1
= 34 m s⁻¹

Notes: acceleration is not constant in circular motion. Kinematics equations of motion cannot be applied.

From Fig. 8.1, tyres provide greatest friction, with coefficient 1.6, when 8(b)(ii) **B1** temperature is about 80 °C **B1** higher than ambient temperature of about 30 °C so need to heat From Fig. 8.2, heated tyres are softer and so will meld its shape to the irregular **B1** road surface to increase contact area and provide more friction (more friction allows more acceleration and higher speeds when turning) 8(c) air experiences a rate of change of momentum upwards and hence by **B1** Newton's 2nd Law, it experiences an upward force By Newton's 3rd Law, the wing experiences a force equal in magnitude and **B1** opposite in direction of that experienced by air. the force presses down on the car and increases the apparent weight 8(d)(i) Taking moments about centre of gravity, sum of clockwise moments = sum of anti-clockwise moments **B1** $N_{\rm R} x_{\rm R} = N_{\rm F} x_{\rm F} + Dh \quad ---(1)$ car is in vertical translational equilbirum, vector sum of forces along vertical is **B1** $N_{\rm R} + N_{\rm F} = W$ ----(2) Solving (1) and (2), $N_{\rm R}x_{\rm R} = N_{\rm F}x_{\rm F} + Dh$ $N_{\rm R} x_{\rm R} = (W - N_{\rm R}) x_{\rm E} + Dh$ $N_{\rm R}(x_{\rm R}+x_{\rm F})=Wx_{\rm F}+Dh$ **B1** $N_{\rm R} = \frac{W x_{\rm F} + Dh}{x_{\rm R} + x_{\rm F}}$

Marks

Qns

8(d)(ii)

$$N_{\rm R} = \frac{Wx_{\rm F} + Dh}{x_{\rm R} + x_{\rm F}}$$

$$W - N_{\rm F} = \frac{Wx_{\rm F} + Dh}{x_{\rm R} + x_{\rm F}}$$

$$N_{\rm F} = W - \frac{Wx_{\rm F} + Dh}{x_{\rm R} + x_{\rm F}}$$

$$= \frac{Wx_{\rm R} + Wx_{\rm F} - Wx_{\rm F} - Dh}{x_{\rm R} + x_{\rm F}}$$

$$= \frac{Wx_{\rm R} - Dh}{x_{\rm R} + x_{\rm F}}$$
A1

8(d)(iii)D increases as the car acceleratesB1magnitude of
$$N_R$$
 increases and magnitude of N_F decreasesB1

8(e)(i) Loss in KE of car = Heat gain by brakes $\frac{1}{2}m_{car}v^{2} = m_{brakes}c\Delta\theta$ $4(1.2)(1130)\Delta\theta = \frac{1}{2}(750)\left(\frac{185 \times 10^{3}}{60^{2}}\right)^{2}$ M1

$$\Delta \theta = 180 \ ^{\circ}\text{C}$$

8(e)(iii) to reduce weight without too much loss of structual integrity B2 to ventilate the brake discs by increasing available surface area to allow water to be pushed out between brake discs and brake pads under slippery conditions

Paper 3 Longer Structured Questions

Qns				Marks
1(a)(i)	pressure exerted by liquid increases with depth of subn	nersion, g	ven by $p = \rho g h$	B1
	there is greater pressure exerted at lower surface of su than the pressure exerted at upper surface	ıbmerged	sphere	B1
	net upward force due to pressure difference results in u	upthrust		B1
1(a)(ii)	magnitude of upthrust is equal to the weight of liquid di	splaced b	y the sphere	M1
	upthrust U = weight of liquid displaced = (mass of liquid displaced) g = $\rho_L Vg$			A1
1(b)	A			
	force	U		
		W		
		>	-	

A1 for each correct graph

h

Qns		Marks
2(a)	Gas atoms are in continuous random direction. There is an equal probability of moving in any direction. Mean velocity in any direction is equal in magnitude to the mean velocity in the opposite direction.	B1

Velocity if a vector quantity with both magnitude and direction. Hence the vector **B1** sum of the mean is zero

2(b)
$$pV = NkT$$
 M1

$$N = \frac{pV}{kT} = \frac{(3.6 \times 10^{-7})(4.2 \times 10^{-7})}{(1.38 \times 10^{-23})(273.15 + 70)}$$
M1

$$= 3.2 \times 10^{23}$$

2(c) assume spherical volumes

$$V_{\text{total}} = NV_{\text{sphere}} = N\left(\frac{4}{3}\pi\left(\frac{d}{2}\right)^3\right)$$
$$= \left(3.2 \times 10^{23}\right)\left(\frac{4}{3}\pi\left(\frac{2 \times 10^{-10}}{2}\right)^3\right)$$
$$= 1 \times 10^{-6} \text{ m}^3$$

volume of gas atoms is $1 \times 10^{-6} \text{ m}^3$, which is 3 orders of magnitude smaller than 2(d) **M1** the volume of the container occupied by gas

> **A1** supports one of the assumptions that the total volume of the gas atoms is negligible compared to volume of container

Qns		Marks
3(a)(i)	t_3 and time t_7	A1
3(a)(ii)	t_4 and time t_8	A1
3(b)(i)	$f = \frac{1}{\text{period } T} = \frac{1}{\frac{60}{4200}} = 70 \text{ Hz}$	A1
3(b)(ii)	$a = -\omega^2 x$ $a_{max} = -(2\pi f)^2 (max displacement from equilibrium)$	M1
	$= -(2\pi(70))^{2}(2.5 \times 10^{-2})$ = 4800 m s ⁻²	M1 A1

A1 for correct shape A1 for correct values and units for acceleration A1 for correct values and units for displacement

©EJC 2021

Qns		Marks
4(a)	two waves travelling in opposite directions superpose	B1
	waves are same type and have same speed, frequency and wavelength	B1
	Notes:	

- 1. Do not use "reflected waves" as it is too specific.
- 2. "Superpose" instead of "meet" or "overlap" should be used as these do not imply interference taking place.
- 4(b) Represents the amplitudes of individual particles on displacement-position axes where the central vertical axis of the pipe represents the positions of individual particles and horizontal axis as the displacement.

At the water surface, the particles have no amplitude, hence a node. At the opening, the particles oscillate between maximum amplitudes, hence an **B1** antinode.

Notes: Draughtsmanship is important

4(d) next stationary wave:

4(c)

let length of tube be *L* speed of sound waves in air be *v* and frequency of wave be *f*

$$v = f\lambda$$
(540)(2L) = fL
$$f = 1100 \text{ Hz}$$
M1
A1

Qns		Marks
5(a)	$R_{3.0} - R_{1.5} = \frac{3.0}{0.3} - \frac{1.5}{0.2}$ $= 2.5 \ \Omega$	M1 A1
	Notes: Gradient is not the resistance	
5(b)(i)	from graph at 0.36 A, $V_{lamp} = 4.5 \text{ V}$ $V_{5.0 \Omega} = 0.36 \times 5.0 = 1.8 \text{ V}$ $V_{14 \Omega} = V_{5.0 \Omega} + V_{lamp}$ = 4.5 + 1.8 = 6.3 V $I_{14 \Omega} = \frac{6.3}{14}$ = 0.45 A	M1 A1
5(c)(ii)	$V_{r} = E - V_{terminal}$ = E - V _{14 Ω} = 7.5 - 6.3 = 1.2 V $I_{r} = I_{total}$ = 0.36 + 0.45 = 0.81 A $r = \frac{V_{r}}{I_{r}}$ 1.2	
	$=\frac{1.2}{0.81}$	M1
	$=$ 1.5 Ω	A1

Qns		Marks
6(a)	induced e.m.f. directly proportional to rate of change of magnetic flux linkage	B1 B1
6(b)(i)	Rate of change of magnetic flux density $\frac{dB}{dB}$ = gradient of B -T graph at 1.0 s	M1
	$\frac{dt}{dt} = 30 \times 10^{-3} - 0$	M1
	$=\frac{1.5-1}{1.5-1}$	
	$= 6.0 \times 10^{-2}$ I s ⁻¹	A0
	Notes: tangent should use points on it as far apart as possible.	
6(b)(ii)	$E = \left \frac{d(N\Phi)}{dt} \right $	
	$= \left NA \frac{dB}{dt} \right $	
	$= 140 \times (2.4 \times 10^{-4}) \times (6.0 \times 10^{-2})$	M1
	$= 2.0 \times 10^{-3} \text{ V}$	A1
6(b)(iii)		
	1.0	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	D1 Jahol units and values for vertical avia	
	BI – label units and values for vertical axis B1 – 0 V for 0 – 1 s and 4.5 s onwards	

B1 - curve fro 1 s to 4.5 s

Qns		Marks
7(a)(i)	minimum energy required to <u>completely separate</u> the nucleons in a nucleus to infinity	B1
	binding energy = (mass defect) × (speed of light) ²	B1
7(a)(ii)	mass defect = [(11 × 1.00814) + (12 × 1.00898) – 22.99706] <i>u</i> = 0.20024 <i>u</i>	M1
	binding energy per nucleon = $\frac{0.20024}{22} \times 931.4$ MeV	M1
	= 8.109 MeV	A1
7(b)(i)	mass change = $(22.99706 + 1.00898 - 23.99857)u$	M1
	$= 7.47 \times 10^{-3} u$	A0

7(b)(ii) energy released in
$$\gamma$$
 photon, $E = 7.47 \times 10^{-3} \times 931.4$ MeV
= $7.47 \times 10^{-3} \times 931.4 \times 10^{6} \times 1.60 \times 10^{-19}$ M1
= 1.11×10^{-12} J

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E}$$

$$= \frac{(6.63 \times 10^{-34})(3.0 \times 10^{8})}{1.11 \times 10^{-12}}$$

$$= 1.78 \times 10^{-13} \text{ m}$$
M1

7(c)
$$A = A_o e^{-\lambda t}$$
$$\frac{A}{A_o} = e^{-\lambda t}$$
$$\frac{1}{20} = e^{-\lambda(65)}$$

$$\lambda = 0.0461 \, \text{hour}^{-1}$$
 A1

C1

9749/H2 PHYSICS 2020

Qns		Marks
8(a)(i)	relative speed of approach of objects is not the same as relative speed of separation of the objects	B1 B1
8(a)(ii)	kinetic energy is not conserved but total energy is conserved	B1
	some of the initial kinetic energy is transferred from the system into other forms of energy	
8(b)	change in height, $h = 1.5 \times (1 - \cos 21^\circ)$	M1
	$= 9.96 \times 10^{-2}$ m	
	loss in GPE = gain in E_k	B1
	$mgh = \frac{1}{2}mv^2 - 0$	
	$v = \sqrt{2gh}$	
	$= \sqrt{2(9.81)(9.96 \times 10^{-2})}$	M1
	$= 1.4 \text{ m s}^{-1}$	A0

8(c)(i) by conservation of linear momentum,

$$p_{A,i} + p_{B,i} = p_{A,f} + p$$

 $m_A u_A + 0 = m_A v_A + p$
 $0.096(1.4) + 0 = 0.096(-0.79) + p$
 $p = 0.21 \text{ kg m s}^{-1}$

$$(100-14)\% \times KE_{A,i} = KE_{A,f} + KE_{B,f}$$

86%× $\frac{1}{2}(0.096)(1.4)^2 = \frac{1}{2}(0.096)(0.79)^2 + KE_{B,f}$ M1

$$KE_{B,f} = 0.051 \,\mathrm{J}$$
 A1

Qns		Marks
8(d)(i)	$KE = \frac{1}{2}mv^2(1)$	
	p = mv(2)	
	(1) $KE v$	
	$\frac{1}{(2)} \cdot \frac{1}{p} = \frac{1}{2}$	C1
	$v = 2\left(\frac{KE}{p}\right) = 2\left(\frac{0.051}{0.21}\right)$	
	$= 0.49 \text{ m s}^{-1}$	A1
9(d)(i)	$n - m_{V}$	
o(u)(i)	p = m(0.49) 0.21 = $m(0.49)$	
	m = 0.43 kg	A1
8(e)	initial total momentum of system is momentum of A which is not zero	M1
	no net external force acting on isolated system during collision, so by principle of conservation of momentum, momentum must be conserved throughout the event and cannot be zero at any time	M1
	so both spheres cannot be stationary at the same time	A1
	Notes: momentum is conserved throughout the process, even during collision.	
8(f)	impulse = $p_f - p_f$	
	=(0.096)(-0.79-1.4)	M1
	$= -0.21 \text{ kg m s}^{-1}$	
	1	A1
	magnitude = 0.21 kg m s ⁻¹	
8(g)	impulse on A is horizontal to the left, hence impulse on B is horizontal to the right	M 1

if centres of spheres are not on same horizontal level, there will be a component of impulse in the vertical direction and B's initial speed will not be horizontal.

©EJC 2021

Qns		Marks
9(a)(i)	region of space where a <u>force acts</u> <u>on a body</u>	B1 B1
9(a)(ii)	1. gravitational field	B1
	2. electric field and gravitational field	B1
9(b)(i)	$t = \frac{s_x}{u_x} = \frac{12 \times 10^{-2}}{6.7 \times 10^7} = 1.8 \times 10^{-19} \text{ s}$	B1
9(b)(ii)	$a_{y} = \frac{F_{E}}{m_{e}}$ $= \frac{eE}{m_{e}}$ $= \frac{e\frac{\Delta V}{d}}{m_{e}}$ $= \frac{1.6 \times 10^{-19} \frac{960}{2.4 \times 10^{-2}}}{9.11 \times 10^{-31}}$ $= 7.0 \times 10^{15} \text{ m s}^{-2}$	M1 M1 A1
9(c)	$s_{y} = \frac{1}{2} (7.0 \times 10^{15}) (1.8 \times 10^{-9})^{2}$ = 0.011 m	M1
	= 1.1 cm	M1
	since 1.1 cm < 1.2 cm (vertical displacement of electron to upper plate), will not collide	A1
9(d)(i)	magnetic force normal to velocity/direction of motion throughout magnitude of magnetic force constant	B1
	so magnetic force provides the centripetal force speed is constant while changing direction of velocity	B1
	Note: Should use 'the direction of motion of the particle' or velocity instead of 'the motion of the particle'	

Qns		Marks
9(d)(ii)	magnetic force provides for centripetal force $Bqv = \frac{mv^2}{r}$ $m = \frac{Bqr}{v}$	M1 M1
	$=\frac{0.090(1.6\times10^{-19})\left(\frac{14.8\times10^{-2}}{2}\right)}{4.6\times10^{4}}$ $=2.32\times10^{-26} \text{ kg}$	M1
	= 14 <i>u</i>	A1
9(e)(i)	radius of circular path decreases	B1

9(e)(ii)	radius of the path (hence diameter) is halved	B1
	diameter of new path = 7.4 cm	B1