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Data    

speed of light in free space c = 3.00  108 m s−1 

permeability of free space 0
 

= 4  10−7 H m−1 

permittivity of free space 0
 

= 8.85  10−12 F m−1 

  = (1/ (36 ))  10−9 F m−1 

elementary charge e = 1.60  10−19 C 

the Planck constant h = 6.63  10−34 J s 

unified atomic mass constant u = 1.66  10−27 kg 

rest mass of electron me = 9.11  10−31 kg 

rest mass of proton mp = 1.67  10−27 kg 

molar gas constant R = 8.31 J K−1 mol−1 

the Avogadro constant NA = 6.02  1023 mol−1 

the Boltzmann constant k = 1.38  10−23 J K−1 

gravitational constant G = 6.67  10−11 N m2 kg−2 

acceleration of free fall g = 9.81 m s−2 
 

Formulae    

uniformly accelerated motion s = 
21

2
ut at+

 
 v2 = u2 + 2as 

work done on / by gas W  = p V  
hydrostatic pressure p  = gh  

gravitational potential  = 
Gm

r
−  

temperature T / K = T/°C + 273.15 

pressure of an ideal gas p = 
21

3

Nm
c

V
 

 

mean translational kinetic energy of an ideal gas molecule E = 
3

2
kT  

displacement of particle in s.h.m. x = 0 sinx t
 

velocity of particle in s.h.m. v = 0 cosv t
 

  = 2 2
0x x −  

electric current I = Anvq 

resistors in series R = R1 + R2 + … 

resistors in parallel 1/R = 1/R1 + 1/R2 + … 

electric potential V = 
04

Q

r
 

alternating current/voltage x = 0 sinx t
 

magnetic flux density due to a long straight wire B = 0

2 d





I

 

magnetic flux density due to a flat circular coil B = 0

2r

 NI

 

magnetic flux density due to a long solenoid B = 0 nI
 

radioactive decay x =   0 exp( )−x t
 

decay constant 
  = 

1
2

ln2

t
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1 (a) A beaker in air contains a liquid. The base area of the beaker is A, as shown in Fig. 1.1. 

The liquid has density  and fills the beaker to a height h. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1.1 
 

(i) Show that the pressure P due to the liquid at the base of the beaker is given by 
 

P = gh 
 
    where g is the acceleration of free fall. 
 

 
 
 
 
 
 
 
 

[1] 
 

 (ii) Explain why the equation in (i) does not give the total pressure at the base of the beaker. 
    

   
 
  [1] 

 
 (iii) Fig. 1.2 shows the variation of the total pressure inside the liquid with depth x below 

the surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2 

both relations used

appropriate algebra leading to ans 

   and    

[B1

   

        ] 

F m
P

A Ah

m g
P

A

Ah g

A

gh







= =


=


=

=

 

Total pressure at the base includes atmospheric / air pressure above the liquid [B1] 

h 

beaker 

base area A 

 

liquid 

0        1       2        3       4       5        6       7       8 

pressure / 104 Pa 

x / cm 

9.65 

9.64 

9.63 

9.62 

9.61 

9.60 

9.66 
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  Use Fig. 1.2 to determine the density of the liquid. 

 
 
 
 
 
 
 
 
 
 
 
 
 

density =                                          kg m–3 [1] 
 
 (b) A spherical buoy of density 220 kg m–3 floats in equilibrium on the surface of sea water of 

density 1050 kg m–3, as shown in Fig. 1.3.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3 (not to scale) 
 

  Determine the percentage of the volume of the buoy that is submerged in water. 
 
 
 
 
 
 
 
 
 
 
 
 
 

percentage =                                          % [2] 
 

 [Total: 5] 
 
 
 
 
 

( ) ( ) ( )2

3

4

3

9.66 9.60 10 9.81 8.0 10

765 k [A1]  (accept 760 to 770 kg g m  m )

p g h



 −

−

−

 = 

−  = 

=

 

( ) ( ) ( ) ( )W S

V V

V g V g

V V

V

V

sub

sub

sub

sub

At equilibrium during floating,  upthrust weight

Let submerged volume be  and volume of sphere be .

1050 220       

0.21

percentage submerged 21%      

[C1]

[A1]

 

=

=

=

=

 =

 

760 to 770  

21 

sea water 

spherical buoy 

submerged portion 

( ) ( )

p gh ptotal at

4

3

m

4

3

9.66 10 9.81 0.080 9.60 10

7 [A1]  (accept65 kg  760  m   to 770 kg m ) 





 −−

= +

 = + 

=
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2 (a) A body travelling at a constant speed in a circular path experience centripetal acceleration. 
Using Newton’s laws of motion explain why there is acceleration although the speed is 
constant. 

 
     

     

     

    [2] 

 (b) A car of mass 1500 kg travels in a horizontal circular path of radius 50.0 m on a banked 
road with speed of 15.0 m s–1 without any frictional force acting on the tyres along the slope. 

 

 

 

 

 

Fig. 2.1 
 

 (i) Calculate the angle  at which the road is banked. 
 

 

 

 

 

 =                                         o [3] 
 

 (ii) Explain how friction force enables the car to travel in the same horizontal circular path  
at a lower speed. 

 
   
 
   
 
   
 
  [2] 

 
 [Total: 7] 

 

 

 

 

The velocity of the body changes along a circular path. By N1L this require an external 

resultant force to act on the body [B1]. Since the centripetal acceleration is pointing to the 

centre of circle and perpendicular to the instantaneous velocity, by N2L, it has no component 

along the path, hence speed is constant.[B1] 

The horizontal component of static friction acts away from the direction of centripetal 

force [B1], resulting in a smaller magnitude of centripetal force [B1]. A smaller centripetal 

force permits the car to move on the banked surface in uniform circular motion with a 

slower speed. 

2

cos

sin  [M1 both eqn]

N mg

mv
N

r

=

=




 

2 215
tan  [M1]

50.0 9.81

v

rg
= =


  

 = 24.6o [A1] 

N 

W 
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3 (a) (i) The kinetic theory for an ideal gas of volume V at pressure p leads to the equation 
 

21

3
pV Nm c= , 

 
   where the other symbols refer to their usual meanings.  

 
  Use the equation of state for an ideal gas to show that the average translational kinetic 

energy EK of a molecule of ideal gas is given by 
 

3

2
K

E kT= . 

 
 
 
 
 
 
 
 
 
 
 
 
 

[1] 
 

 (ii) One helium atom has a mass of 6.68 × 10–27 kg. 
  Helium may be considered as an ideal gas. 
 
  Show that the total kinetic energy of the helium atoms in 1.00 mol of helium gas  

at 25 oC is 3720 J.  
 
 
 
 
 
 
 
 
 
 
 
 

[1] 
 

 (iii) State the value of the internal energy of 1.00 mol of helium gas at 25 oC. Explain your 
answer. 

    
   
 
   
 
   
 
  [2] 

 

Internal energy is the sum of the random distribution of the microscopic kinetic energy 

(KE) and microscopic potential energy (PE) of the gas molecules [B1]  

For an ideal gas, there are no intermolecular forces between molecules so PE = 0, so 

internal energy = KE = 3720 J [B1] 

( ) ( ) ( )

K, total

23 23

3

2

3
6.02 10 1.38 10 25 273.15    

2

3715

3720 J

[C1]

[  (shown) 0] A

E NkT

−

=

=   +

=

=

 

2

22 1
[B1]  for 

1

3

1 3
    leading to  seen

22 2
pV

pV Nk

Nk

T

Nm c NkT

m c kT T m c

=

= =

=  
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 (iv) The helium gas is gradually cooled from 25 oC to –150 oC at which the internal energy 

is 1540 J. 
 

  On Fig. 3.1, plot points and draw a line to show the variation with temperature  of the 
internal energy U of the helium gas. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 
[1] 

 
 (v) Explain how your graph leads to the idea of an absolute zero of temperature. 
    

   
 
   
 
  [1] 

 

 (b) Gases like hydrogen and helium are found mainly in stars. These gases are at a very high 
pressure. 

 
  Use the assumptions of the kinetic theory of gases to suggest why, in practice, the gas 

found in stars is unlikely to behave as an ideal gas. 
 

     

     

     

   [2] 

 
[Total: 8] 

The graph shows a linear relationship between internal energy and temperature so 

extrapolate the graph to 0 internal energy to reach a temperature of –273.15 oC [B1] 

At very high pressure, gas molecules are very close to each other [B1] 

EITHER intermolecular forces are not negligible OR volume of molecules are not negligible 

compared with the gas volume [B1] 

U / J 

 / oC 

–300          –250          –200           –150          –100            –50               0                50  

1000 

2000 

3000 

4000 
(25, 3720) 

(–273, 0) 
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tube, area of 
cross-section A 

lead shots 

liquid density  

4 A tube closed at one end, has a constant area of cross section A. Some lead shots are placed 

in the tube so that the tube floats vertically in a liquid of density . The total mass of the tube 
and its contents is M. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 
 
 (a) When the tube is given a small vertical displacement and then released, show that the 

acceleration a of the tube is related to its vertical displacement y by the expression 
 

.
A g

a y
M


= −  

 
 
 
 
 
 
 
 
 
 
 

[2] 
 
 (b) Fig. 4.2 shows the variation with time t of the vertical displacement y of the tube in another 

 liquid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2 

y / cm 

 t / s 

When in equilibrium and submerge to a depth d, Weight = Upthrust 

Mg Adg=   [M1] 

When displaced another depth y, (assign downward positive following downward 
displacement) 

( )

( )  [B1]

 [A0]

Mg U Ma

Mg Ag d y Ma

Agd Ag d y Ma

A g
a y

M

− =

−  + =

 −  + =


= −
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 (i) Determine the frequency f0 of the oscillating tube. 

 
 
 
 
 
 

f0 =                                          Hz [2] 
 

 (ii) The tube has an external diameter of 2.4 cm and is floating in a liquid of density  
950 kg m–3. Calculate the mass of the tube and its contents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mass =                                          kg [3] 
 

 
 (iii) More lead shots are added to the tube. State and explain the changes to the graph in 

Fig. 4.2. 
    

   
 
   
 
  [1] 

 
[Total: 8] 

 
 
 
 
 
 
 
 
 
 
 
 

  

The tube goes through two oscillations in a time of 1.20 s. [B1] 

frequency, fo = 2/1.20 = 1.67 Hz [A1] 

 

Compare 
A g

a y
M


= − with 2a y= −  

( )

( )

2

2

2
2

2

1
C1

2

0 025 950 9 811 1
1 67 M1

2 4 2 4

0 038 kg  A1

. .
.

.

A g

M

A g
f

M

A g
f

M

D g

M M

M


 =


 =


=   



    
= =   

   

=   

 

The frequency is reduced with addition of lead shots. 

Therefore the graph now shows greater period. [B1: both underlined points] 
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5 Two dippers S1 and S2, oscillating in phase with equal amplitude at a frequency of 8.0 Hz, 
generate waves of wavelength 6.0 cm in a ripple tank as shown in Fig. 5.1. 

 

 
Fig. 5.1 

 
 The superposition of the waves generated produce an interference pattern of maxima and 

minima. 
 
 (a) State the Principle of Superposition. 
 

     

     

     

   [2] 

 
 (b) For the waves from S1 and S2 meeting at point M, state 
 

 (i) their path difference, 
    

  [1] 
 

 (ii) their phase difference. 
    

  [1] 
 
 
 
 
 
 

S2 

S1 

M 

O 

O’ 

0th 
1st 2nd 

3rd 
1

st
 

2
nd

 

Max: 

Min: X 

X’ 

(8 – 5)  6.0 = 18.0 cm [B1] 

Zero or 6 radians    [B1] 

When two or more waves meet at a point, [B1] the displacement at that 

point is equal to the vector sum of the displacements of the individual 

waves. [B1] 
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 (c) The waves radiate uniformly from the dippers in all directions on the surface of the water. 
Given that the amplitude of the wave at M when only S1 is oscillating is 4.2 mm, deduce the 
amplitude of the wave at M 

 
 (i) when only S2 is oscillating, 

 
 
 
 
 
 
 
 
 
 

amplitude =                                          mm [2] 
 
 
 
(ii) when both S1 and S2 are oscillating. 

 
 
 
 

amplitude =                                          mm [1] 
 
 (d) OO’ is the perpendicular bisector of S1S2. 
 

 (i) Draw a line on Fig 5.1 to represent the third minima from OO’ and label it XX’. [1] 
 

 (ii) Explain why the amplitude of the wave along XX’ is not zero. 
 

   
 
  [1] 

 
 
 (e) The frequency of S1 is kept at 8.0 Hz and the frequency of S2 is decreased slightly to  

7.8 Hz.  
   
  Describe what will be observed at M.  
 

     

     

     

   [2] 

 
[Total: 11] 

 
 
 
 
 
 

Intensity = 
Power

Area
=

P

sd
  

1

d
   

 where d is distance from dipper and s is depth of surface of water, 

and Intensity  amplitude2  

→  amplitude  
1

d
    [M1] 

amplitude due to S2 = 
8

5
 4.2 = 5.3 mm [A1] 

 

At M, the two waves are in phase  →  amplitude = 5.3 + 4.2 = 9.5 mm

 [B1] 

(Due to the different distances from their respective sources,) the two waves 

have different amplitudes. [B1] Thus minimum amplitude = a1 − a2  0. 

The amplitude of the wave at M will vary from maximum to minimum and back to 

maximum [B1] once every 5 seconds. [B1] 
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6 (a) Define acceleration. 
 

     

    [1] 

 (b) State what is meant by a field of force. 
 

     

    [1] 

 

 (c) Two parallel metal plates A and B are separated by a distance of 2.8 cm in a vacuum, as 
shown in Fig. 6.1. 

 The plates have length 11 cm. Plate A is at unknown potential P while plate B is at a potential 

of −120 V. The electric field may be assumed to be uniform between the plates and zero 
outside the plates. 

 An electron with kinetic energy 4.1  10−16 J enters the region midway between the plates. 

The initial direction of the electron is at an angle 30 above the horizontal. The electron 
charts out a parabolic path between the plates and exits just at the edge of plate B as shown 
in Fig. 6.1. 

  (i) Sketch on Fig. 6.1, lines to represent the electric field within the plates.                     [1] 

 (ii) For the electron between the metal plates,  

1. show that the vertical component of velocity just as the electron enters the electric 

field is 1.5  107 m s−1, 

 

 

[2] 

Acceleration is the rate of change of velocity [B1] 

A field of force due to a body’s property (eg. charge, mass) is a region in space in which 

another body carrying that property experiences a force when it is placed in the field [B1] 

plate A 

plate B 

2.8 cm 

11 cm 

−120 V 

P 

Fig. 6.1 

30 

path of 
electrons 

2 16

e

16
6

31

y

7

7 1

1
KE 4.1 10

2

(2)(4.1 10 )
30.002 10      B1

9.11 10

sin30

1.50009 10                                   B1  

1.5 10  m s                                 A0

m v

v

v v

−

−

−

−

= = 


= = 



= 

= 

= 

 



13 
 

NYJC 2024 9749/02/J2Prelim/24                [Turn over 

2. the time for the electron to travel a horizontal distance equal to the length of the 
plates, 

 

 

 

 

time =                                          s [1] 

3. calculate the acceleration of the electron. 

 

 

 

 

 

acceleration =                                          m s−2 [2] 

 (iii) Hence or otherwise, determine the potential P of plate A for the electrons to chart out 
the path shown in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

P =                                          V [3] 

[Total: 11] 

 
 
 
 
 
 
 

31 15 2

19

3

(9.11 10 )(8.66 10 )(2.8 10 )
    M1

1.6 10

1.38 10  V                                                      C1

V
F qE q ma

d

mad
V

q

− −

−


= = =

  
 = =



= 

 

Plate A is at a lower potential: 

1380 120           

1500 V                 A1

V P

P

 = = − −

= −
 

x

2

6

x

9

11 10

30.0 10 cos30

4.23 10  s      A1

s u t

s
t

u

−

−

=


= =

 

= 

 

Upwards taken as positive direction 

2

2 7 9 9 2

15 2

1

2

1
1.4 10 (1.5 10 )(4.23 10 ) (4.23 10 )

2

8.66 10  m s  

ys u t at

a

a

− − −

−

= +

−  =   + 

= − 
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7 A square coil of side 5.0 cm and 50 turns is placed horizontally midway between the poles of a 
magnet as shown in Fig. 7.1. 

 

 

Fig. 7.1 

The magnetic flux density due to the magnet in the area of the coil may be regarded as uniform 
and acts in a vertical direction with a magnitude of 0.12 T. 

 (a) Calculate the magnetic flux through the area of the coil. 
 
 
 
 
 
 

magnetic flux =                                          Wb [1] 
 

 (b) The coil can be displaced by any angle  about its axis OO’ as shown in Fig. 7.2. 
 

 
Fig. 7.2 

Calculate the magnetic flux linkage in the coil when  = 30. 

 
 
 
 
 
 
 

magnetic flux linkage =                                          Wb-turns [2] 
 

N 

S 

square coil 

O 

O’ 

square coil O 

O’ 

 

magnetic flux = B A = 0.12  0.502 = 3.010−4 Wb   [A1] 

magnetic flux linkage = N B A cos30o = 50  3.010−4 cos30o [M1] 

   = 0.013 Wb     [A1] 
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 (c) The coil is rotated about OO’ with a constant angular frequency. With reference to Faraday’s 
law of electromagnetic induction, 

 
 (i) explain why a current is present in the coil, 
    

   
 
   
 
   
 
  [2] 

 
 
 

 (ii) state and explain the value(s) of  within one rotation of the coil at which the current in 
the coil is the greatest. 

    
   
 
   
 
   
 
  [2] 

  
(d) Fig. 7.3 shows the current induced in the coil when it is rotating with a period of 50 ms.  

 

Fig. 7.3 

(i) Without further calculations, draw another graph on Fig. 7.3 to show the current in the 
coil when the period of rotation is decreased to 30 ms. [1] 

 (ii) Determine the ratio of 

mean power required to rotate the coil with a period of 30 ms

mean power required to rotate the coil with a period of 50 ms
. 

 
 
 
 
 

ratio =                                          [2] 
 

[Total: 10] 

0 10 20 30 40 50 60 70 80 90           t / ms 

Current 

As the coil rotates, the angle between the magnetic field and the plane of the coil 

changes, leading to a change in the magnetic flux linkage in the coil. [B1] By Faraday’s 

law, an e.m.f. is induced in the coil which will produce a current in the closed loop. [B1] 

When  = 90o and 270o, [A1] the rate of the change in the flux linkage is the greatest 

[M1], thus by Faraday’s Law, the e.m.f. induced at that instant is also the greatest, 

resulting in the greatest current. 

P = 
2E

R
 and  E = 

d

dt


−     

1

T
  →  P  

2

1

T
 [M1] 

ratio = 
2

50

30

 
 
 

= 2.8   [A1] 
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8 Recent developments show that there has been a significant surge in the number of commercial 
satellites being sent into low Earth orbits (LEO). LEOs are orbits situated relatively close to the 
Earth's surface, with altitudes of less than 2000 km, representing the height of the satellite above 
the Earth's surface. Some LEO satellites can orbit as close as 160 km above the Earth’s surface, 
which, despite being considerably high, is still far above the altitudes typically reached by most 
commercial airplanes, which seldom exceed 14 km. 

 
 Fig. 8.1 shows the radii and periods of orbit of various LEO satellites. 
 

satellite 
radius of 

orbit ,r / km 
period of 

Orbit, T / min 

GOCE 6630 89.6 

Tiangong 
Space Station 

6770 92.3 

GRACE 6870 94.5 

 
 

 
 
 

Due to the fast speed of LEOs, it is not easy for ground stations to track a specific LEO satellite. 
The ground station can only track the LEO satellite when it has line of sight as shown in Fig. 8.2. 

 

 
 

Fig. 8.2 
 
 There are challenges to operating LEO satellites. One of these challenges is atmospheric drag 

due to gases in the thermosphere, which leads to orbital decay, a loss of altitude over time. If 
the LEO satellite is not boosted back to its original altitude, the rate of orbital decay increases 
over time. This is partly due to the increase in the density of air with decreasing altitude. 

 
 Another challenge is space debris which can be very dangerous to LEO satellites. The Orbital 

Debris Program tracks over 25000 objects larger than 10 cm in LEO. It is estimated that there 
may also be up to 100 million smaller objects in LEO. 

 
 

 

LEO satellite in its orbit 

ground station 

Legend 
distance over which ground station 

can communicate with the satellite 

  

 

radius of  

Earth 

Fig. 8.1 

Earth 
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 Satellites used for telecommunications are usually in geostationary orbits. Using suitable dishes 
to transmit the signals, communication over most of the Earth’s surface is possible at all times 
by using only three satellites. Satellites used for meteorological observations and observations 
of the Earth’s surface are usually in LEO. Polar orbits, in which the satellite passes over the 
North and South Poles of the Earth, are often used. One such satellite orbits at a height of about  

12 000 km above the Earth’s surface circling the Earth at an angular speed of 2.5  10−4 rad s−1. 
The microwave signals from the satellite are transmitted using a dish and can only be received 
within a limited area, as shown in Fig. 8.3. 
 

 

 
 

Fig. 8.3 
 

The signal of wavelength λ is transmitted in a cone of angular width θ, in radian, given by 
d


 =  

where d is the diameter of the dish. The satellite transmits a signal at a frequency of 1100 MHz 
using a 1.7 m diameter dish. As this satellite orbits the Earth, the area over which a signal can 
be received moves. There is a maximum time for which a signal can be picked up by a receiving 
station on Earth. 

 
 (a) Show that the distance travelled by the Tiangong Space Station during which it is able to 

communicate with a specific ground station is 4.7  106 m.   

  You may assume that the mass of the Earth to be 5.97  1024 kg. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 
 
 
 
 
  

not to scale 

 

2

2

E

GM 
,  g = 9.81 m s

r

r  = 6370 km

E

g −=
          C1 

 

Let   be the angle between the ground station and the point where the 

ground station has first/last contact with the space station 

radius of Earth 6370
cos

radius of orbit 6770

0.345 rad                              C1





= =

=

         

Distance over which the ground station has contact = 2 x radius or orbit    M1 

= 2×0.345×6770×103   

= 4.7×106  m                      A0 
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 (b) Hence or otherwise, calculate the time of contact with the ground station (the time during 
which the ground station can communicate with the LEO satellite) for the Tiangong Space 
Station. 

 
 
 
 
 
 
 
 
 

time of contact =                                          s [2] 
 
 (c) Suggest a reason other than the one given in the passage why loss of altitude causes the 

rate of orbital decay to increase over time. 
 

     

     

     

   [2] 

 
 (d) Explain why space debris as small as 10 cm can still be dangerous for LEO satellites. 
 

     

   [1] 

 
 (e) Suggest one advantage in the application of a satellite when a low polar orbit is used and 

one advantage when a geostationary orbit is used. 
 

     

     

     

   [2] 

 
 (f) Determine the width of the area of reception on the Earth’s surface when the satellite shown 

in Fig 8.3 is transmitting a 1100 MHz signal at a distance of 12 000 km from the Earth’s 
surface. 

 
 
 
 
 
 
 
 
 
 

width of area =                                          m [3] 

-3 1

3 -3 1

2 2
1.135×10  rad s

92.3 60

6770 10 1.135×10 7680 m s                   M1

T

v r

 




−

−

= = =


= =   =

 

Time of contact = 
64.7 10

612 s           A1
7680


=  

 

As the LEO satellite decreases in altitude, its kinetic energy/speed increases       M1 

As drag increases with speed, the atmospheric drag increases leading to a greater rate of 

orbital decay   A1 

The speed of objects in LEO is very high and have high momentum/energy     A1 

Low polar orbit 
 Good resolutions of photos taken           B1 
Geostationary orbit 
      Continuous observation of a specific region on Earth. B1 

8

6

7 6

3.0 10
0.273m  C1

1100 10

0.273
= 0.161 rad         M1

1.7

width = D =1.2 10 0.161 1.93 10 m     A1

c

f

d









= = =



= =

  = 
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 (g) For a satellite in a polar orbit 12000 km above the Earth’s surface, determine the maximum 

amount of time that a stationary receiver at the South Pole can remain in contact with the 
satellite in each orbit. 

 
 
 
 
 
 
 
 
 
 

maximum amount of time =                                          s [3] 
 
 (h) The satellite in (g) is moved into a higher orbit. Suggest, with a reason, how this affects                                                                                                           
 

 (i) the signal strength received by the receiver at the South Pole and, 
    

   
 
   
 
  [2] 

 
 (ii) contact time for the receiver at the South Pole. 
    

   
 
   
 
  [2] 

 
[Total: 20] 

 
End of Paper 

3

4

3

beam width 1.93 10
Angle subtended by beam at Earth’s surface = 0.30 rad    C1

Earth's radius 6370

0.30 0.30
Time taken =          M1

2.5 10

                    = 1.18 10  s                    A1

 −


= =

=




 

 

Signal would be weaker                              A1  as 

Energy spread over wider area      M1 

Signal received for longer (each orbit)  A1 

Beam width increases with satellite height M1 


