Answer all questions on the OMR form provided (40 Marks)

For each question, there are four possible answers, A, B, C and D.

Choose the one you consider correct.

1 Zn reacts with VO₃ ions to give Vⁿ⁺.

3.9 g of Zn was required to react completely with 40.0 cm³ of 1.0 mol dm⁻³ of KVO₃.

What is the value of n?

Α	1	С	3
В	2	D	4

2 In which of the following pairs do the species have **different** shapes?

- **A** A lCl_3 and CO_3^{2-}
- B NH₄⁺ and CH₄
- \mathbf{C} NH₃ and H₃O⁺
- D SeF₄ and SO₄²⁻

3 The following graph shows how ionic radius changes across Period 3 for seven elements.

- A The sharp increase in ionic radius between the 4th and 5th element is due to an increase in the number of principal quantum shells.
- **B** There is a decrease in ionic radius for the first 4 elements in Period 3 due to decreasing shielding effect.
- C There is a decrease in ionic radius for the last 3 elements due to decreasing proton to electron ratio.
- D The first 4 elements form anions and hence have lower ionic radii than the last 3 elements which form cations.

4	In which of the following reactions is the acid acting as an oxidant?				
	Α	KBr + H ₃ PO ₄ ® HBr + KH ₂ PO ₄			
	В	$MgO + H_2SO_4$ ® $MgSO_4 + H_2O$			
	С	12HClO ₄ + P ₄ O ₁₀ ® 6Cl ₂ O ₇ + 4H ₃ PO ₄			
	D	Cu + 4HNO ₃ ® Cu(NO ₃) ₂ + 2H ₂ O + 2NO ₂			
5		dm³ flask containing helium at 2 kPa pressure is connected (at constant temperature)			
		2 dm³ flask containing neon at 1 kPa pressure.			
		at is the final pressure after connection?			
	A	4/3 kPa			
	В	$\frac{3}{2}$ kPa			
	С	$\frac{5}{3}$ kPa			
	D	2 kPa			
6	The use of the Data Booklet is relevant to this question.				
	Phosphorus, P ₄ , has the following molecular structure:				
	P				
	Imagine that nitrogen were to form a similar molecule N ₄ shown in the reaction below:				
		2N₂(g) ® N₄(g)			
	What would be the value of ΔH (in kJ mol ⁻¹) for the above reaction?				
	A	1028			
	В	1348			
	С	1954			
	D	2628			

7	Wh	hich gas shows the greatest deviation from ideal gas behavior?				
	A	HC!				
	В	Не				
	C	CH ₄				
	D	N_2				
8		e use of the data booklet is releva		•		
				c due to dissolved carbon dioxide. Which metal		
		not be dissolved by tap water cor				
	A	Cr	С	Fe		
	В	Cu	D	Pb		
9	\//h	ch of the following mixtures is no	+ on (ocid/conjugate base pair?		
9	A	H ₂ O/OH ⁻	C C	NaH/Na		
	В	H ₂ PO ₄ -/HPO ₄ ² -	D	NH ₃ /NH ₂ -		
	Ь		U	NH3/NH2		
10	\//h	ich of the following pairs of solution	ne w	ould form an acidic buffer when mixed?		
10	A	HCN and NaCN	JIIS W	ould form all acidic buller when mixed:		
	В	HNO ₃ and NaNO ₃				
	C	NaOH and NaCl				
	D	HCl and NaOH				
11	Blea	aching solutions are manufactur	ed by	y dissolving chlorine gas in sodium hydroxide		
	solu	ution to give the following reaction.				
		$Cl_2(g) + 2OH^-(aq) \Longrightarrow OCl^-(aq) + Cl^-(aq) + H_2O(l)$				
	Use	ers are warned not to mix the bleach with other cleaning solutions to prevent evolution				
		nazardous chlorine gas. Which of the following actions will lead to liberation of chlorine				
	gas	· · · · · · · · · · · · · · · · · · ·				
	Α	Addition of water to bleach				
	В	Mixing of an alkali with bleach				
	C	Shaking bleach with table salt, N	laC <i>l</i>			
	D	Subjecting bleach to high pressure				

12	Giv	en that,			
	Equilibrium I: $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ $K_{c1} = 3$ Equilibrium II: $C(s) + \frac{1}{2}O_2(g) \rightleftharpoons CO(g)$ $K_{c2} = 2$				
		uilibrium III: $CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO(g)$	(g) D ₂ (g)	$K_c = ?$	
	Wh	at is the numerical K₅ value for the Equ	ilihriu	ım III?	
	A		С		
		$\frac{\sqrt{2}}{3}$	0	$\frac{\sqrt{3}}{2}$	
			_		
	В	$\left\lfloor \frac{2}{3} \right\rfloor$	D	$\frac{3}{2}$	
		3		2	
13	The	rate of removal of the pain-killing dr	מ מוני	aracetamol from the body is a first order	
13		ction with a rate constant, k , of 0.26 h ⁻¹	•	aracetamor from the body is a first order	
	Tea	Clion with a rate constant, A, or 0.20 ff	•		
	Llas	w long will it take for 6.25% of the name	otom	saling acted to remain in the hadu?	
	HO	w long will it take for 6.25% of the parac	cetan	iol ingested to remain in the body?	
	Α	2.7 h a		0.4 hours	
	A	2.7 hours	С	8.1 hours	
	В	10.6 hours	D	13.5 hours	
14	Sul	fates of Group II metals exist as crysta			
		MgSO ₄ .7H ₂ O CaSO ₄ .2		SrSO ₄ BaSO ₄	
		ich one of the following accounts for the		•	
	Α	The atomic radius of the elements inc		<u> </u>	
	В	The ionic character of these sulfates i			
	C The ionisation energy of the elements decreases down the group.				
	D	The radius of the cation increases do	<mark>wn th</mark>	<mark>e group.</mark>	
15	X is	s a mixture of two compounds. When X	is tre	ated with an excess of dilute hydrochloric	
	acid, a colour gas is evolved and some, but not all of the mixture dissolves.				
	Which one of the following mixtures could be X?				
	Α	Ba(NO ₃) ₂ and Ca(OH) ₂			
	В	Ag₂SO₄ and CaCO₃			
	С	CaCO₃ and MgSO₄			
	D	Ca(OH)₂ and MgCO₃			
		<u> </u>			
l	l				

16	A yellow precipitate of cadmium(II) sulfide is formed when H ₂ S is passed into an aqueous				
	solution of cadmium(II) ions, Cd ²⁺ . This precipitate is also obtained in the presence of				
	dilute hydrochloric acid but not in the presence of concentrated hydrochloric acid nor in				
	exc	ess potassium chloride.			
	Whi	ch explanation accounts for all these observations?			
	Α	The presence of a high concentration of H ⁺ (aq) suppresses the ionisation of H ₂ S			
		(aq).			
	В	The concentration of S^{2-} (aq) is reduced by the formation of SCl_4^{2-} (aq).			
	С	CdS (s) is insoluble in concentrated HCl (aq).			
	D	Cd^{2+} (aq) ions react with Cl^{-} (aq) to form the complex ion $[CdCl_4]^{2-}$ (aq).			
17	A cı	urrent of 2.0 A is used to plate Ni(s) from 500 cm ³ of a 1.00 mol dm ⁻³ Ni ²⁺ (aq) solution.			
	Wha	at is the concentration of Ni ²⁺ (aq) after 3.0 hours?			
	Α				
	В	3 0.46 mol dm ⁻³			
	C	C 0.78 mol dm ⁻³			
	D	0.89 mol dm ⁻³			
18	Whi	ch one of the following statements is correct about a reaction for which the equilibrium			
	con	stant is independent of temperature?			
	A	The enthalpy change of reaction is zero.			
	В	Its rate constants do not vary with temperature.			
	С	There are equal numbers of moles of reactants and products.			
	D	The activation energies for both the forward and reverse reactions are zero.			

Magnesium iodate(V) undergoes thermal decomposition to yield products as shown by the equation below. The other Group II iodates(V) also undergo similar thermal decomposition.

$$2Mg(IO_3)_2(s) \% 2MgO(s) + 2I_2(g) + 5O_2(g)$$

The three graphs given below show the change in mass when 2.00 g each of three Group II iodates(V) are heated separately at a temperature T.

Which three Group II iodates(V) give rise to these graphs?

	Graph (1)	Graph (2)	Graph (3)
Α	Ca(IO ₃) ₂	$Mg(IO_3)_2$	Ba(IO ₃) ₂
В	$Mg(IO_3)_2$	$Ba(IO_3)_2$	Sr(IO ₃) ₂
С	Ca(IO ₃) ₂	$Mg(IO_3)_2$	Sr(IO ₃) ₂
D	$Sr(IO_3)_2$	$Ba(IO_3)_2$	$Ca(IO_3)_2$

20 A compound **X** exhibits structural isomerism, the isomers being members of different homologous series.

To which pair of isomers could **X** belong?

- A acyl chlorides and carboxylic acids
- B carboxylic acids and esters
- C amino acids and ammonium salts
- **D** amides and amino acids

What is the total number of structural and geometrical isomers for a compound with molecular formula C₃H₅F, excluding cyclic structures?

A	60

B 4

C 5

D 6

1,2-dibromo-3-chloropropane (**DBCP**) has been used in the control of earthworms in agricultural land. The structure of **DBCP** is shown below.

Which of the following reactions will lead to the highest yield of DBCP?

A	CH ₂ =CHCH ₂ Cl + Br ₂ / CCl ₄ ® DBCP
---	--

- B CH₂=CHCHBr₂ + HCl (g) ® **DBCP**
- C $CH_3CH_2CH_2Cl + 2Br_2/uv light ® DBCP + 2HBr$
- D CH₃CHBrCH₂Br + BrC*l* / uv light ® **DBCP** + HC*l*

23 Compound J, C₅H₁₁C*l* undergoes the following reaction.

$$\begin{array}{ccc} & \text{Ethanolic KOH} \\ C_5H_{11}C\mathit{l} & & \longrightarrow & C_5H_{10} \end{array}$$

Which of the following cannot be Compound J?

- A 1-chloropentane
- **B** 2-chloropentane
- C 2 –chloro-3-methylbutane
- D 1-chloro-2,2-dimethlypropane

24		olypeptide was digested using two different enzymes. The fragments obtained were					
	separated using electrophoresis. Analysis of the fragments from each digestion gave the						
	following results:						
	Digestion using enzyme N:						
		phe-leu					
	-	-glu-val					
		-glu-cys					
	asp	-cys					
	Dig	estion using the enzyme O :					
	val-	asp-cys-thr					
	phe-leu-ser						
	glu-	cys					
	cys-glu						
	Wh	at is the correct sequence of the polypeptide structure?					
	Α	cys-glu-val-ser-glu-cys-asp-cys-thr-phe-leu					
	В	cys-glu-val-asp-cys-thr-phe-leu-ser-glu-cys					
		glu-cys-glu-val-asp-cys-thr-phe-leu-ser-glu					
	С	gid bys gid validap bys till priblica sol gid					
		ser-glu-cys-glu-val-asp-cys-thr-phe-leu-ser					
	D	301-giu-0y3-giu-vai-a3p-0y3-tiii-piie-ieu-361					

Methylbenzene and bromine, in the ratio of 1:6 were mixed and left under the sun and compound **Q** was isolated. After which, iron fillings were added to the mixture at room temperature and Compound R was identified to be the final product. Which of the following is likely to be Compounds **Q** and **R**? Compound **Q** Compound R CH₂Br Α CH₂Br CH₂Br В Br CH₂Br CBr₃ C CBr₃ CBr₃ D CBr₃ Br

26	One	e industrial preparation of ethanoic acid is the direct carbonylation of methanol using a	
20	rhodium catalyst.		
		$CH_3OH + CO \xrightarrow{\text{rhodium}} CH_3CO_2H$ catalyst	
		catalyst	
		CO H	
	\	CO ₂ H	
	vvn	ich compound could be used to produce $HC-CH_2CO_2H$ by this method?	
		CH ₂ CO ₂ H	
	Α	OH 	
		HC-CH ₂ CO ₂ H	
		ĊO₂H	
	В	ÇO ₂ H	
		$H\dot{C} - CO_2 H$	
		⊢ − CH₂OH	
	C	OH	
	<u> </u>		
		HC-CH ₂ OH	
		CH ₂ OH	
	D	CH₂OH	
		H¢—CH ₂ OH	
		CH ₂ OH	
27	Tan	noxifen is widely used in the treatment of breast cancer.	
		CH ₃	
		ĊH ₂	
		Ĭ	
		CH₃	
		CH ₂ N	
		CH ₂ CH ₃	
		Tamoxifen	
	Wh	at is the number of sp^2 and sp^3 carbon atoms respectively after subjecting Tamoxifen	
	to h	ydrogen gas under heat and in the presence of nickel?	
		sp ² sp ³	

	sp ²	sp³	
Α	6	20	
В	8	18	
C	18	8	
D	20	6	

28	The reduction of a nitrile produces a compound of formula C ₃ H ₇ NH ₂ .					
	Wh	Which of the following would be produced if the same nitrile is heated with hydrochloric				
	acio	1?				
	Α	CH ₃ CONH ₂				
	B	CH₃CH₂COOH				
	С	(CH ₃) ₂ CHCOOH				
	D	CH ₃ CH ₂ OH				
29	GA	BA has the structural formula, H ₂ NCH ₂ CH ₂ CH ₂ CO ₂ H. It is a neuro-transmitter				
	rele	ased by red algae to encourage shellfish larvae to settle on the ocean bed.				
	How does GABA differ from amino acids obtained by the hydrolysis of proteins?					
	Α	A It does not form zwitterions.				
	В	It is not a 2-aminocarboxylic acid.				
	С	It is insoluble in water.				
	D	It cannot form a polyamide linkage.				
30	Which property enables proteins to function as a pH buffer?					
	A	Proteins contain the carboxyl and amino groups.				
	В	Proteins are soluble.				
	D	Proteins have high molecular mass.				
	D	D Proteins possess secondary and tertiary structures.				

For questions 31 - 40, the responses **A** to **D** should be selected on the basis of

Α	В	С	D 1 only	
1,2 and 3	1 and 2	2 and 3		
are correct	only are correct	only are correct	is correct	

No other combination of statements is to be used as a correct response.

31		Which of the following is/are correct statement(s) about a 12.0 g sample of ¹² C?
	A	The number of atoms is 6.02 x 10 ²³ .
	B	The number of atoms is the same as the number of atoms in 4.0 g of ⁴ He.
	С	The number of atoms is the same as the number of atoms in 2.0 g of ¹ H ₂ .

The enthalpy change of reaction, DH_r, between sodium and water (in excess) to produce sodium hydroxide and hydrogen gas can be measured in the laboratory.

Other than temperature change of the solution, what information is/are needed to calculate a value for the enthalpy change of this reaction?

1	Mass of water
<mark>2</mark>	Mass of sodium
3	Pressure

33 0.1 mol of each of the following is separately added to 100 cm³ of water.

Which of the following resulting solution(s) show an increasing order of pH values?

1	PCl ₃ , AlCl ₃ , NaCl
<mark>2</mark>	NH ₃ , NaOH, Ba(OH)₂
<mark>3</mark>	HCl, CH₃CO ₂ H, CH₃CH ₂ OH

	Wh	Hydration of a ga	seanus inn		
	2		of a diatomic mole	cule into atoms	
	3	The dissociation		Cule into atoms	
		The submittation of	or a cona		
5	The	 e table below shov	ws the solubility pro	oduct, in mol dm ⁻³ fo	or three metal sulfides. I
	acidic solution, $[S^{2-}]_{\text{saturated}} = 10^{-18} \text{ mol dm}^{-3}$.				
		Metal ion	Mn ²⁺	Ni ²⁺	Ag⁺
		K _{sp} of sulfide	10 ⁻¹⁶	10 ⁻²¹	10 ⁻³⁶
	Wh	ich of the metal s	sulfide(s) would be	precipitated from the	ne acidic solution conta
	0.0	10 mol dm ⁻³ of the	metal ion when th	e solution is saturate	d with hydrogen sulfide?
	1	Mn ²⁺			
	2	Ni ²⁺			
	<u> </u>	INI-			
	<mark>3</mark>	Ag ⁺			
	3	Ag⁺			
			/lhexyl-p-methoxyc	innamate (MOC) is u	used as a sunscreen.
			/lhexyl-p-methoxyc	innamate (MOC) is ι	used as a sunscreen.
			/lhexyl-p-methoxyc	innamate (MOC) is u	used as a sunscreen.
		e compound 2-ethy			
		e compound 2-ethy	/lhexyl-p-methoxyo	innamate (MOC) is u	
		e compound 2-ethy			
6	The	e compound 2-ethy		сн==сно	
6	The	e compound 2-ethy Co	H ₃ O statement(s) is/ar	сн==сно	
6	The	e compound 2-ethy Contich of the following A brown precipitate	g statement(s) is/ar	CH—CHO	CO ₂ C ₈ H ₁₇
6	The Wh	e compound 2-ethy Contich of the following A brown precipitate	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇
6	Wh	e compound 2-ethy ich of the following A brown precipita A racemic mixtur	g statement(s) is/ar ate is formed with one is produced when	CH=CHC e correct? cold alkaline KMnO ₄ .	CO ₂ C ₈ H ₁₇

37	A hydrocarbon, on heating with acidified KMnO ₄ gives			
	CH ₃ CH ₂ COCH ₂ CH ₂ CH ₂ COOH.			
	Which of the following is/are possible structure(s) of the hydrocarbon?			
	1			
	2	OH OH		
	3			
38		ich of the following reaction(s) could have the same intermediate?		
	1	CH ₃ CH=CH ₂ ® intermediate ® CH ₃ CH(NH ₂)CH ₃		
	2 3	CH ₃ CH=CH ₂ ® intermediate ® CH ₃ COCH ₃		
	5	CH ₃ CO ₂ CH(CH ₃) ₂ ® intermediate ® CH ₃ CHBrCH ₃		
39	Psi	locin is a psychedelic mushroom alkaloid. It is the active compound that produces		
		ucinations from ingesting "magic mushrooms" and amplifies sensory experience.		
		mpound Y is a derivative of <i>Psilocin</i> .		
		NUL		
	OH CH ₃			
	Which of the following statement(s) is/are true about Y ?			
	1	It gives white fumes with CH ₃ COC <i>l</i> .		
	2	It dissolves in both aqueous acids and alkalis.		
	3	The nitrogen-containing group in the ring has a lower pK_b than the nitrogen-containing group in the side chain.		

The <i>Grignard</i> reaction is a very important tool in organic reactions involving the formation
of carbon-carbon bond. Grignard reagents are formed by reacting halogenoalkane, R-X,
with magnesium in dry ether.
For example, reaction of CH ₃ C <i>l</i> with Mg,
dry ether
CH ₃ Cl + Mg
Grignard Reagent
Grignard reagents allow the carbon chain of carbonyl compounds to be lengthened.
For example,
OOH
1. CH ₃ M _G C/, ether
O OH 1. CH ₃ MgC <i>l</i> , ether
Z. Π ₃ U
Which compounds could be made from a ketone and a <i>Grignard</i> reagent?
1 CH ₃ C(CH ₂ CH ₃) ₂ OH
2 CH ₃ CH ₂ CH ₂ CH
_

END OF PAPER

(CH₃CH₂)₂CHOH