Mastery Questions

11. [N2007/1/2]

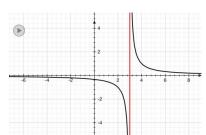
Functions f and g are defined by

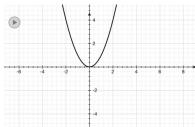
f:
$$x \mapsto \frac{1}{x-3}$$
, for $x \in \mathbb{R}$, $x \neq 3$, g: $x \mapsto x^2$, for $x \in \mathbb{R}$

- (i) Only one of the composite functions fg and gf exists. Give a definition (including the domain) of the composite that exists, and explain why the other composite does not exist.
- (ii) Find $f^{-1}(x)$ and state the domain of f^{-1} .

[Ans: (i) gf:
$$x \mapsto \frac{1}{(x-3)^2}$$
, $x \in \mathbb{R}$, $x \neq 3$; (ii) f^{-1} : $x \mapsto 3 + \frac{1}{x}$, $x \in \mathbb{R}$, $x \neq 0$]

[Solution]





(i) $R_{\rm f} = \mathbb{R} \setminus \{0\} \subseteq \mathbb{R} = D_{\rm g} : \text{gf exists.}$ ${\rm gf:} x \mapsto \frac{1}{(x-3)^2}, \ x \in \mathbb{R}, \ x \neq 3$

 $R_g = [0, \infty)$ is not a subset of $\mathbb{R} \setminus \{3\} = D_f$: fg does not exist.

(ii) Let
$$y = \frac{1}{x-3}$$

 $x - 3 = \frac{1}{y}$
 $x = \frac{1}{y} + 3$
 $\therefore f^{-1}: x \mapsto 3 + \frac{1}{x}, x \in \mathbb{R}, x \neq 0$

12. [N2008/2/4]

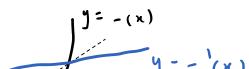
The function f is defined by f: $x \mapsto (x-4)^2 + 1$ for $x \in \mathbb{R}$, x > 4.

- Sketch the graph of y = f(x). Your sketch should indicate the position of the graph in **(i)** relation to the origin.
- Find $f^{-1}(x)$, stating the domain of f^{-1} . (ii)
- On the same diagram as in part (i), sketch the graph of $y = f^{-1}(x)$. (iii)
- Write down the equation of the line in which the graph of y = f(x) must be reflected in (iv) order to obtain the graph of $y = f^{-1}(x)$, and hence find the exact solution of the equation $f(x) = f^{-1}(x)$.

[Ans: (ii)
$$f^{-1}(x) = 4 + \sqrt{x - 1}, x \in \mathbb{R}, x > 1$$
; (iv) $y = x$; $x = \frac{9 + \sqrt{13}}{2}$]

[Solution]

Tutorial 5: Functions



(ii)
$$y = (x-4)^2 + 1$$

 $(x-4)^2 = y-1$
 $x = 4 \pm \sqrt{y-1}$
Since $x > 4$, choose $x = 4 + \sqrt{y-1}$
 $f^{-1}(x) = 4 + \sqrt{x-1}, x \in \mathbb{R}, x > 1$.

(iv) It must be reflected about the line y = xIn this case, solving $f(x) = f^{-1}(x)$ is equivalent to solving f(x) = x. $(x-4)^2 + 1 = x$ $x^2 - 8x + 17 = x$ $x^2 - 9x + 17 = 0$ $x = \frac{9 \pm \sqrt{9^2 - 4(17)}}{2} = \frac{9 \pm \sqrt{13}}{2}$ Since x > 4, $x = \frac{9 + \sqrt{13}}{2}$.

(4,1)

13 [N2014/1/1]

The function f is defined by $f: x \mapsto \frac{1}{1-x}, x \in \mathbb{R}, x \neq 1, x \neq 0$.

(i) Show that
$$f^2(x) = f^{-1}(x)$$
. [4]

(ii) Find $f^3(x)$ in simplified form. [1]

[Solution]

(i)

Tutorial 5: Functions

$$f^{2}(x) = f(f(x))$$

$$= f\left(\frac{1}{1-x}\right)$$

$$= \frac{1}{1 - \left(\frac{1}{1-x}\right)}$$

$$= \frac{1-x}{-x}$$

$$= \frac{x-1}{x}$$

$$= 1 - \frac{1}{x}$$

$$= 1 - \frac{1}{x}$$

$$\therefore f^{2}: x \mapsto 1 - \frac{1}{x}, x \in \mathbb{R}, x \neq 1, x \neq 0. \text{ (Since D}_{f^{2}} = D_{f})$$

$$R_{f} = D_{f^{-1}} = (-\infty, 0) \cup (0, 1) \cup (1, \infty)$$

$$\text{Let } f(x) = y.$$

$$y = \frac{1}{1-x}$$

$$y(1-x) = 1$$

$$y - xy = 1$$

$$xy = y - 1$$

$$x = \frac{y-1}{y}$$

$$= 1 - \frac{1}{y}$$

$$\therefore f^{-1} : x \mapsto 1 - \frac{1}{x}, x \in \mathbb{R}, x \neq 1, x \neq 0.$$
Hence $f^{2}(x) = f^{-1}(x)$.

(ii)

Since $f^{2}(x) = f^{-1}(x)$,
$$f^{3}(x) = f(f^{-1}(x))$$

$$= x$$

Tutorial 5: Functions Page 15 of 15