

Raffles Institution Raffles Programme Year Three Chemistry

Name:	() Class:	Date:	
i idilio.	١	, 0.000.	Dato.	

Exercise – The Definitions and Chemistry of Acids and Bases

Definitions

	ACID	BASE
Common definition (Arrhenius)	a substance that produces H ⁺ in aqueous solution	a substance that produces OH- in aqueous solution
Expanded definition (Bronsted-Lowry)	a substance that donates H⁺	a substance that accepts H ⁺

Fill in the blanks.

Chemistry of Acids				
1	Acid reacts with Base to form Salt and Water			
(a)	Hydrochloric acid + Sodium hydroxide → Sodium chloride + water			
(b)	Hydrochloric acid + Potassium hydroxide →			
(c)	Sulfuric acid + Sodium hydroxide → Sodium sulfate + water			
(d)	Sulfuric acid + Potassium hydroxide →			
(e)	Nitric acid + Sodium hydroxide → Sodium nitrate + water			
(f)	Nitric acid + Calcium hydroxide →			
2	Acid reacts with Carbonate to form Salt, Water and Carbon dioxide			
(a)	Hydrochloric acid + Sodium carbonate → Sodium chloride + water + carbon dioxide			
(b)	Hydrochloric acid + Calcium carbonate →			
(c)	Sulfuric acid + Magnesium carbonate →			
(d)	Nitric acid + Iron(II) carbonate →			

Acids also react with substances called 'bicarbonates' or 'hydrogen carbonates'. In these reactions the bicarbonates behave exactly like carbonates. For example:

Hydrochloric acid + Sodium hydrogen carbonate → Sodium chloride + water + carbon dioxide

3	Acid reacts with Reactive Metal to form Salt and Hydrogen
(a)	Hydrochloric acid + Magnesium → Magnesium chloride + hydrogen
(b)	Hydrochloric acid + Iron →
(c)	Sulfuric acid + Zinc →
The C	Chemistry of Bases
	Note: According to the expanded definition of bases, all metal oxides and hydroxides are considered bases
1	Base reacts with Acid to form Salt and Water
(a)	Sodium hydroxide + Hydrochloric acid → Sodium chloride + water
(b)	Calcium oxide + Hydrochloric acid →
(c)	Copper(II) oxide + Sulfuric acid →
(d)	Magnesium oxide + Nitric acid →
2	Base reacts with Ammonium salt to form Salt, Water and Ammonia
(a)	Sodium hydroxide + Ammonium chloride → Sodium chloride + water + ammonia
(b)	Calcium hydroxide + Ammonium nitrate →
(c)	Magnesium oxide + Ammonium sulfate →
(d)	Iron(II) oxide + Ammonium chloride →
3	Alkali reacts with (some) Salt solutions to form Salt and Insoluble Hydroxide {An alkali is a soluble base}
(a)	Sodium hydroxide + Copper(II) sulfate → Sodium sulfate + Copper(II) hydroxide
(b)	Sodium hydroxide + Iron(II) sulfate →
(c)	Sodium hydroxide + Zinc chloride →
(d)	Potassium hydroxide + Aluminium sulfate →
(e)	Potassium hydroxide + Lead(II) nitrate →

Potassium hydroxide + Iron(III) nitrate →

(f)

Data-based Question

Magnesium oxide is used to make many medicines. It is made from magnesite mineral by the process shown in the flow chart. Magnesite contains 75% magnesium carbonate.

Use knowledge gained from the previous 2 pages and the above flow chart to answer the following questions.

- (a) Give the name of the main gas in waste gas A.
- (b) Name reactant B.
- (c) What method should be used to separate out the solid magnesium hydroxide in process C?
-

(d) Gas D is a common compound. Suggest the identity of gas D, based on the formula of magnesium hydroxide, Mg(OH)₂, and magnesium oxide, MgO.

.....

(e) Magnesium citrate is used as a laxative. It can be made by reacting citric acid with one of the compounds in the above flow chart. Write a word equation for the formation of magnesium citrate.

.....