

No	Suggested Solution
	$\angle POQ = 30^{\circ}$
	$\angle QOR = 30^{\circ}$
	$\angle POR = 60^{\circ}$
	$\overrightarrow{OP} \bullet \overrightarrow{OP} = 5^2$
	$\overrightarrow{OP} \bullet \overrightarrow{OQ} = 5 \times \sqrt{10^2 - 5^2} \cos 30^\circ = 25\sqrt{3} \left(\frac{\sqrt{3}}{2}\right) = \frac{75}{2}$
	$\overrightarrow{OP} \bullet \overrightarrow{OR} = 5 \times 10 \cos 60^{\circ} = 25$
	$\overrightarrow{OP} \bullet \left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} \right)$
	$= \overrightarrow{OP} \bullet \overrightarrow{OP} + \overrightarrow{OP} \bullet \overrightarrow{OQ} + \overrightarrow{OP} \bullet \overrightarrow{OR}$
	=87.5
2(b)	$2\overrightarrow{OE} - 5\overrightarrow{OF} + 3\overrightarrow{OG} = 0$
	$2\overrightarrow{OE} - 2\overrightarrow{OF} - 3\overrightarrow{OF} + 3\overrightarrow{OG} = 0$
	$2\overrightarrow{OE} - 2\overrightarrow{OF} = 3\overrightarrow{OF} - 3\overrightarrow{OG}$
	$2\overrightarrow{FE} = 3\overrightarrow{GF}$
	Since $\overrightarrow{FE} / \overrightarrow{FG}$ and F is the common point,
	E, F and G are collinear.
	$G \xrightarrow{2} F \xrightarrow{3} E$
	E
	EF: EG = 3:5
	C 4
	Since they are parallel, $\overrightarrow{FF} = \overrightarrow{FC} = 0$
	$EF \times EG = 0$
3(i)	$f(r+1) - f(r) = (r-1)2^{r} - (r-2)2^{r-1}$
	$=2^{r-1}(2(r-1)-r+2)$
	$=r2^{r-1}$
	$=2^r \left(\frac{1}{2}r\right) \text{(shown)}$
	\ <u></u>
	$a=\frac{1}{2}$

No	Suggested Solution
3(ii)	$\sum_{r=1}^{n} 2^{r} \left(\frac{1}{2} r \right) = \sum_{r=1}^{n} [f(r+1) - f(r)]$
	$\frac{1}{2}\sum_{r=1}^{n}r2^{r}=f(2)-f(1)$
	+f(3) - f(2)
	+
	+ f(n) - f(n-1)
	+f(n+1) - f(n)
	= f(n+1) - f(1)
	$= (n-1)2^n - (-1)2^0$
	$=(n-1)2^n+1$
	$\sum_{r=1}^{n} r 2^{r} = 2 \left[(n-1)2^{n} + 1 \right]$
	$= (n-1)2^{n+1} + 2$
3(iii)	$\sum_{r=3}^{n} (r+2)2^{r} = \sum_{r=3}^{n} r2^{r} + \sum_{r=3}^{n} 2^{r+1}$
	$=\sum_{r=1}^{n}r2^{r}-\sum_{r=1}^{2}r2^{r}+\frac{2^{4}(2^{n-2}-1)}{2-1}$
	$= ((n-1)2^{n+1} + 2) - 10 + (2^{n+2} - 16)$
	$= (n+1)2^{n+1} - 24$
	Alternatively,
	$\sum_{r=3}^{n} (r+2)2^{r}$ $= \sum_{r=2}^{r-2=n} r 2^{r-2}$
	$=\sum_{r-2=3}^{r-2=n}r2^{r-2}$
	$=\sum_{r=5}^{r=n+2}r\left(\frac{2^r}{2^2}\right)$
	$=\frac{1}{4}\sum_{r=5}^{n+2}r2^{r}$
	$=\frac{1}{4}\left[\sum_{r=1}^{n+2}r2^{r}-\sum_{r=1}^{4}r2^{r}\right]$
	$= \frac{1}{4} \Big[(n+1)2^{n+3} + 2 - (3(2^5) + 2) \Big]$
	$= \frac{1}{4} \Big[(n+1)2^{n+3} - 96 \Big]$
	$= (n+1)2^{n+1} - 24$
4(i)	$y = x - \cos^{-1} x$
	$\frac{dy}{dx} = 1 + \frac{1}{\sqrt{1 - x^2}} = 1 + \left(1 - x^2\right)^{-\frac{1}{2}}$

No	Suggested Solution
	$\frac{d^2 y}{dx^2} = x \left(1 - x^2\right)^{-\frac{3}{2}}$
	$\frac{d^2 y}{dx^2} = \frac{x}{(1-x^2)^{\frac{3}{2}}}$
	Since $\frac{dy}{dx} - 1 = (1 - x^2)^{-\frac{1}{2}}$,
	$\frac{d^2y}{d^2} = \frac{x}{x^2}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{x}{\left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^{-3}}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^3 x \text{ (shown)}$
	$y = x - \cos^{-1} x$
	$x - y = \cos^{-1} x$
	$\cos(x-y) = x$
	Differentiating throughout w.r.t. x ,
	$-\left(1 - \frac{\mathrm{d}y}{\mathrm{d}x}\right)\sin\left(x - y\right) = 1$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}-1\right)\sin\left(x-y\right)=1$
	Differentiating throughout w.r.t. x,
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right] \sin\left(x - y\right) + \left[\left(1 - \frac{\mathrm{d}y}{\mathrm{d}x}\right) \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right) \right] \cos\left(x - y\right) = 0$
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] \sin\left(x - y\right) - \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^2 \cos\left(x - y\right) = 0$
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] \left[\frac{1}{\left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)}\right] - \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^2 x = 0$
	$\left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] \left[\frac{1}{\left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)}\right] = \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^2 x$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{\mathrm{d}y}{\mathrm{d}x} - 1\right)^3 x \text{ (shown)}$

No	Suggested Solution
4(ii)	When $x = 0$, $y = -\frac{\pi}{2}$, $\frac{dy}{dx} = 2$ and $\frac{d^2y}{dx^2} = 0$
4(iii)	$\frac{d^2 y}{dx^2} = \left(\frac{dy}{dx} - 1\right)^3 x$ $\frac{d^3 y}{dx^3} = \left(\frac{dy}{dx} - 1\right)^3 + x \left[3\frac{d^2 y}{dx^2} \left(\frac{dy}{dx} - 1\right)^2\right]$
	When $x = 0$, $\frac{d^3 y}{dx^3} = 1$ Series expansion is $y = -\frac{\pi}{2} + (2)x + \left(\frac{0}{2!}\right)x^2 + \left(\frac{1}{3!}\right)x^3 + \dots$ $y = -\frac{\pi}{2} + 2x + \frac{x^3}{6} + \dots$
4(iv)	$\frac{dy}{dx} = 1 + \frac{1}{\sqrt{1 - x^2}} = \frac{d}{dx} \left[-\frac{\pi}{2} + 2x + \frac{x^3}{6} + \dots \right] = 2 + \frac{x^2}{2} + \dots$
5(i)	Im $ \begin{array}{c} A \\ r \\ \theta \\ C \end{array} $ Re $ \begin{array}{c} C \\ D \end{array} $ Note:
	Note:

No	Suggested Solution
	b = -2ia
	$= \left -2i \right \left a \right = 2r$
	arg(b) = arg(-2ia)
	$= \arg(-2i) + \arg(a) = -\frac{\pi}{2} + \theta$
5(ii)	$\angle AOB = \frac{\pi}{2}$ (by previous part)
	$\angle BOC = \theta$
5(iii)	Since the length of adjacent sides of <i>OBDC</i> are equal, it is a rhombus.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	OD bisects $\angle BOC$. $\cos \angle COM = \frac{OM}{2r}$ $OM = 2r \cos \frac{\theta}{2}$
	$OM = 2r\cos\frac{\theta}{2}$
	$ b+c = OD = 2OM = 4r\cos\frac{\theta}{2}$
	$\arg(b+c) = -\frac{\pi}{2} + \angle COM$
	$= -\frac{\pi}{2} + \frac{\theta}{2}$
	$b+c=4r\cos\frac{\theta}{2}e^{i\left(\frac{\theta}{2}-\frac{\pi}{2}\right)}$
6(a)	$P(A' \cap B) = P(B) - P(A \cap B)$
	= P(B) - P(A)P(B)
	$= P(B) - [P(A) \times P(B)](*)$
	= P(B) [1 - P(A)]
	$= P(A') \times P(B)$

No	Suggested Solution
	Alternative
	$P(A' \cap B) = P(A \cup B) - P(A)$
	$= P(A) + P(B) - P(A \cap B) - P(A)$
	$= P(B) - \lceil P(A) \times P(B) \rceil (*)$
	$= P(B) \lceil 1 - P(A) \rceil$
	$= P(A') \times P(B)$
6(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$0.7b - 0.15 \ge 0 \Rightarrow b \ge \frac{3}{14}$ (1)
	When $m = 0$, $0.3 + 0.7b \le 0.8$
	$0.7b \le 0.5 \Rightarrow b \le \frac{5}{7}$
	Or Use $0.5 - 0.7b \ge 0$
	$\frac{3}{14}$ $\frac{5}{7}$
	$\frac{3}{14} \le b \le \frac{5}{7} \Rightarrow \frac{9}{140} \le 0.3b \le \frac{3}{14}$ $\frac{9}{140} \le P(A \cap B) \le \frac{3}{14}$
7(a)	Required probability $= \frac{\frac{13!}{13} \times {}^{13}C_2 \times 2!}{\frac{15!}{15}}$
	$=\frac{15!}{15!}$
	15
	$=\frac{6}{7}$ or 0.857 (3 s.f.)
	Alternative
	Total numbers of ways = $(15-1)!=14!$
	Number of ways leaders seated together

No	Suggested Solution
	$= (14-1) \times 2 = 13 \times 2$
	Probability = $1 - \frac{13! \times 2}{14!} = 1 - \frac{1}{7} = \frac{6}{7}$
	14! 7 7
7(b)	Let <i>X</i> be the event that the 3 students from the same class are seated separately.
	Let <i>Y</i> be the event that both leaders are seated separately.
	Required probability
	$=\frac{P(X\cap Y)}{P(Y)}$
	$= \frac{P(X) - P(X \cap Y')}{P(Y)}$
	$\frac{12!}{12} \times {}^{12}C_3 \times 3! - \frac{11!}{11} \times 2! \times {}^{11}C_3 \times 3!$
	15!
	$= \frac{\frac{12!}{12} \times {}^{12}C_{3} \times 3! - \frac{11!}{11} \times 2! \times {}^{11}C_{3} \times 3!}{\frac{15!}{15}}$ $= \frac{\frac{15!}{15}}{\frac{6}{7}}$
	6/7
	$=\frac{95}{156}$ or 0.609 (3 s.f.)
7(c)	Required probability
/(0)	
	$=\frac{^{13}C_6}{^{15}C_7}$
	$=\frac{4}{15}$ or 0.267 (3 s.f)
	15
8(i)	$P(match \cap (sum < 5))$
-()	$P(\text{match} \mid (\text{sum} < 5)) = \frac{P(\text{match} \cap (\text{sum} < 5))}{P(\text{sum} < 5)}$
	$P(\{1,1\})$
	$= \frac{P(\{1,1\})}{P(\{1,1\} \text{ or } \{1,2\} \text{ or } \{2,1\} \text{ or } \{3,1\})}$
	$\frac{2}{9} \times \frac{1}{8}$
	$= \frac{1,1}{\left(\frac{2}{9} \times \frac{1}{8}\right) + 2\left(\frac{2}{9} \times \frac{1}{8}\right) + 2\left(\frac{2}{9} \times \frac{2}{8}\right)}$
	$\frac{1}{36}$ (1.3) or (3.1)
	$= \frac{30}{7}$ $\frac{7}{36}$ $\{1,2\} \text{ or } \{2,1\}$
	$= \frac{1 \cdot (\{1,1\})}{P(\{1,1\} \text{ or } \{1,2\} \text{ or } \{2,1\} \text{ or } \{3,1\})}$ $= \frac{\frac{2}{9} \times \frac{1}{8}}{(\frac{2}{9} \times \frac{1}{8}) + 2(\frac{2}{9} \times \frac{1}{8}) + 2(\frac{2}{9} \times \frac{2}{8})}$ $= \frac{\frac{1}{36}}{\frac{7}{36}}$ $= \frac{1}{7}$ Method 1
	Method 1
	P(match) = P({1,1} or {3,3} or {5,5}) = 3($\frac{2}{9} \times \frac{1}{8}$) = $\frac{1}{12}$
	From above, $P(\text{match} (\text{sum} < 5)) = \frac{1}{7}$
	Since $P(\text{match} \mid (\text{sum} < 5)) = \frac{1}{7} \neq \frac{1}{12} = P(\text{match})$,
	:. the 2 events are not independent.

No Suggested Solution Method 2 From above, $P(sum < 5) = \frac{7}{36}$ and $P(match \cap (sum < 5)) = \frac{1}{36}$ $P(match) = P(\{1,1\} \text{ or } \{3,3\} \text{ or } \{5,5\}) = 3(\frac{2}{9} \times \frac{1}{8}) = \frac{1}{12}$ Since $P(match \cap (sum < 5)) = \frac{1}{36} \neq (\frac{7}{36})(\frac{1}{12}) = P(match)P(sum < 5)$, \therefore the 2 events are not independent. 8(ii) Let n be least no. of rounds such that	
From above, $P(\text{sum} < 5) = \frac{7}{36}$ and $P(\text{match} \cap (\text{sum} < 5)) = \frac{1}{36}$ $P(\text{match}) = P(\{1,1\} \text{ or } \{3,3\} \text{ or } \{5,5\}) = 3(\frac{2}{9} \times \frac{1}{8}) = \frac{1}{12}$ Since $P(\text{match} \cap (\text{sum} < 5)) = \frac{1}{36} \neq (\frac{7}{36})(\frac{1}{12}) = P(\text{match})P(\text{sum} < 5)$, $\therefore \text{ the 2 events are not independent.}$	
P(match) = P($\{1,1\}$ or $\{3,3\}$ or $\{5,5\}$) = $3\left(\frac{2}{9} \times \frac{1}{8}\right) = \frac{1}{12}$ Since P(match \cap (sum < 5)) = $\frac{1}{36} \neq \left(\frac{7}{36}\right)\left(\frac{1}{12}\right) = P(\text{match})P(\text{sum} < 5)$, \therefore the 2 events are not independent.	
Since $P(\text{match} \cap (\text{sum} < 5)) = \frac{1}{36} \neq (\frac{7}{36})(\frac{1}{12}) = P(\text{match})P(\text{sum} < 5)$, \therefore the 2 events are not independent.	
:. the 2 events are not independent.	
_	
8(ii) Let n be least no. of rounds such that	
(ii) Let it be reast not of reastable such that	
P(match with at most <i>n</i> rounds) ≥ 0.75	
Method A:	
P(match with at most <i>n</i> rounds) ≥ 0.75	
P({match round 1}) or {match round 2} oror {match round n }) ≥ 0.75	
$\frac{1}{12} + \left(\frac{11}{12}\right)\left(\frac{1}{12}\right) + \left(\frac{11}{12}\right)^2\left(\frac{1}{12}\right) + \dots + \left(\frac{11}{12}\right)^{n-1}\left(\frac{1}{12}\right) \ge 0.75$	
$\frac{1}{12} \left[1 - \left(\frac{11}{12} \right)^n \right]$ Sum of n terms of a GP with	
$\frac{\frac{1}{12} \left[1 - \left(\frac{11}{12} \right)^n \right]}{1 - \frac{11}{12}} \ge 0.75$ Sum of <i>n</i> terms of a GP with $a = \frac{1}{12}, r = \frac{11}{12}$	
$\left(\frac{11}{12}\right)^n \le 0.25$	
Method B: (method of complementation) $P(\text{match with at most } n \text{ rounds}) \ge 0.75$	
1 – P(no match in all <i>n</i> rounds) ≥ 0.75	
P(no match in all <i>n</i> rounds) ≤ 0.25	
$\left(\frac{11}{12}\right)^n \le 0.25$	
$\left(\overline{12}\right) \leq 0.23$	
To solve $(\frac{11}{12})^n \le 0.25$,	
Method 1: Method 2:	
1 (0.05)	
$n \ge \frac{\ln(0.25)}{\ln(\frac{11}{12})} \qquad \qquad \frac{n}{15} \qquad \frac{\left(\frac{11}{12}\right)^n}{15 \qquad 0.271 > 0.25}$	
13 0.2/1/0.23	
$\therefore n \ge 15.93$ 16 0.249 < 0.25	
Least $n = 16$	
Using GC, least $n = 16$	
8(iii) Method 1:	
P(match on 3 rd draw)	
$= P(\{same, different, same\} \text{ or } \{different, same, same\})$	
For 3 cases of 1 or 3 or 5	
$=3(\frac{2}{9}\times\frac{7}{8}\times\frac{1}{7})+3(\frac{7}{9}\times\frac{2}{8}\times\frac{1}{7})$	
$= \frac{1}{6}$ 1 or 3 or 5 to be repeated	
$-\frac{1}{6}$ Numbers other than the one to be repeated	
Either 1 or 3 or 5 drawn	
Same 1 or 3 or 5 drawn earlier Remaining numbers not drawn Fither 1 or 3 or 5 drawn	

No	Suggested Solution
	0.05 -1.64485 3626 0
	Since H ₀ is not rejected
	$\frac{\overline{x}-15}{\boxed{160}} > -1.644853626$
	$\sqrt{80(79)}$
	$\overline{x} > 14.738$ $\therefore \overline{x} > 14.74 \ (2 \text{ d. p})$
9(v)	$\bar{x} = 14.9125 \text{ (exact)}$
	$Or \ \overline{x} = \frac{1193}{80}$
	$s^2 = (1.31393)^2 = 1.726 \approx 1.73$
	Or $s^2 = \frac{10911}{6320}$
9(vi)	Since s^2 from Germsfree is smaller, hence the test statistic value from the test for Germsfree will be more negative. Therefore $p_1 > p_2$.
10(i)	$\frac{1+2+3+4}{k} = 1 \Rightarrow k = 10 \text{ (shown)}$
10(ii)	{1,1}
	$P(W=1) = (0.1)^2 = \frac{1}{100} = 0.01$
	$\{1,2\},\{2,1\}$
	$P(W=1.5) = 2(0.1)(0.2) = \frac{1}{25} = 0.04$
	$\{1,3\},\{2,2\},\{3,1\}$
	$P(W = 2) = 2(0.1)(0.3) + (0.2)^2 = \frac{1}{10} = 0.1$
	${2,3},{3,2},{1,4},{4,1}$
	$P(W = 2.5) = 2(0.1)(0.4) + 2(0.2)(0.3) = \frac{1}{5} = 0.2$
	${3,3},{2,4},{4,2}$
	$P(W=3) = 2(0.2)(0.4) + (0.3)^2 = \frac{1}{4} = 0.25$

No	Suggested Solution
	${3,4},{4,3}$
	$P(W = 3.5) = 2(0.3)(0.4) = \frac{6}{25} = 0.24$
	{4,4}
	$P(W=4) = (0.4)^2 = \frac{4}{25} = 0.16$
	w 1 1.5 2 2.5 3 3.5 4
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
10(iii)	Mean of the numbers on the balls =
	1(0.1) + 2(0.2) + 3(0.3) + 4(0.4) = 3
	E(W) = 0.01 + 1.5(0.04) + 2(0.1) + 2.5(0.2)
	+3(0.25)+3.5(0.24)+4(0.16)=3
	Since $E(W)$ = Mean of numbers on the balls, therefore W is an unbiased estimator of
	the population mean.
	OR
	$E(W) = E\left(\frac{X_1 + X_2}{2}\right) = E(X) = \mu$
10(iv)	P(W > 2.50) = 0.25 + 0.24 + 0.16 = 0.65
	Let X be the number of games where Pat earns more than \$2.50 out of 5 games $X \sim B(5,0.65)$
	$P(X \ge 3) = 1 - P(X \le 2) = 0.7648 \approx 0.765 (3 \text{ s.f.})$
	OR
	P(proceed to second round)
	$= {5 \choose 3} \left(\frac{13}{20}\right)^3 \left(\frac{17}{20}\right)^2 + {5 \choose 4} \left(\frac{13}{20}\right)^4 \left(\frac{17}{20}\right)^1 + \left(\frac{13}{20}\right)^5$
	= 0.765
10(v)	$3m\left(\frac{2}{m}\right) - \frac{m}{2}\left(\frac{m-2}{m}\right) \ge 0$
	$12m - m^2 + 2m \ge 0$
	$14m - m^2 \ge 0$
	$m(14-m) \ge 0$
	Since $m > 0$, $14 - m \ge 0$ i.e. $m \le 14$
	Since there are at least one white balls

No	Suggested Solution
	$3 \le m \le 14$, where m is an integer
11(i)	Let X be the running timing of a C1 girl.
	$\bar{X} \sim N\left(14.8, \frac{2}{k}\right)$
	$P\left(0<\overline{X}\le15\frac{2}{3}\right)>0.99$
	$ k \qquad P\left(0 < \overline{X} \le 15\frac{2}{3}\right) $ $ 14 0.9881 $
	15 0.9912 > 0.99
	Least value of $k = 15$
	$P\left(\overline{X} \le 15\frac{2}{3}\right) > 0.99$
	$P\left(Z \le \frac{15\frac{2}{3} - 14.8}{\sqrt{\frac{2}{k}}}\right) > 0.99$
	$P\left(Z \le \frac{13\sqrt{k}}{15\sqrt{2}}\right) > 0.99$
	0.99 $\frac{13\sqrt{k}}{15\sqrt{2}}$
11(ii)	Let W be the random variable for the running timing of a girl from a C2 class in the
	following year.
	$W \sim \mathrm{N} ig(\mu, \sigma^2 ig)$
	$P\left(W > 17\frac{1}{3}\right) = 0.05 \Rightarrow P\left(Z > \frac{17\frac{1}{3} - \mu}{\sigma}\right) = 0.05$

Suggested Solution
$P\left(W \le 15\frac{2}{3}\right) = 0.7 \Rightarrow P\left(Z \le \frac{15\frac{2}{3} - \mu}{\sigma}\right) = 0.7$
$\frac{17\frac{1}{3} - \mu}{\sigma} = 1.644853626$ $\Rightarrow \mu + 1.644853626\sigma = 17\frac{1}{3} (1)$
$\Rightarrow \mu + 1.644853626\sigma = 17\frac{1}{3} (1)$
$\frac{15\frac{2}{3} - \mu}{\sigma} = 0.5244005101$
$\Rightarrow \mu + 0.5244005101\sigma = 15\frac{2}{3} (2)$
Solving equations (1) and (2),
$\mu = 14.8866 = 14.9$ (to 3sf) $\sigma = 1.48749 = 1.49$ (to 3sf)
By GC, the distribution graph shows a significant probability of 0.0152 for a running timing of 7 minutes or even lesser, which is highly not possible for a girl running 2.4 km.
Y1=normalcdf(~1E99,X,15.1,-\(\frac{1}{4}\)) X=7 Y=0.0152008
Alternatively, By GC, $P(Y \le 8) = 0.028877$
This means that if there are 500 girls in a cohort, there will be around 14 girls who will be running 2.4 km at a timing of 8 minutes or lesser. This is an unrealistic timing for a 2.4 km run.
Let X be the random variable for the running timing of a girl from C1 cohort. $X \sim N(14.8,2)$
Let Y be the random variable for the running timing of a girl from C2 cohort. $Y \sim N(15.1,1.4)$

No	Suggested Solution
	$E(X_1 + X_2 + X_3 + X_4 - 4Y)$
	=4(14.8)-4(15.1)
	=-1.2
	$Var(X_1 + X_2 + X_3 + X_4 - 4Y)$
	$=4(2)+4^2(1.4)$
	= 30.4
	$\therefore X_1 + X_2 + X_3 + X_4 - 4Y \sim N(-1.2, 30.4)$
	$P(X_1 + X_2 + X_3 + X_4 - 4Y < 1)$
	$= P(-1 < X_1 + X_2 + X_3 + X_4 - 4Y < 1)$
	= 0.140589
11(v)	= 0.141 (to 3 sf) 1. Every girl in the C1 class has equal probability of failing/passing the 2.4 km
(a)	running test.
	2. The event of a girl failing/passing the 2.4 km test is independent of another girl
	failing/passing the 2.4 km test in the C1 class.
11(v) (b)	$P\left(Y > 17\frac{1}{3}\right) = 0.0295457369$
	<pre><leave 5="" answer="" at="" least="" or="" raw="" s.f.="" to="" use="" values=""></leave></pre>
	Let A be the number of girls from a C2 class who will fail the test, out of n girls.
	$A \sim B(n, 0.0295457369)$
	$P(A < 3) = P(A \le 2) = 0.977 $ (3 s.f)
	D., CC
	By GC,
	X Y1 16 0.9892 17 0.9871 18 0.9849 19 0.9825 20 0.9798 21 0.977 22 0.9739 23 0.9766 24 0.9635 26 0.9596
	n = 21