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Oscillations,

e Simple harmonic motion
e Energy in simple harmonic motion
¢ Damped and forced oscillations: resonance

:Learning Outcomes:

Candidates should be able to:
(a) describe simple examples of free oscillations.

(b) investigate the motion of an oscillator using experimental and graphical
methods.

(c) show an understanding of and use the terms amplitude, period,
frequency, angular frequency and phase difference and express the
period in terms of both frequency and angular frequency.

(d) recall and use the equation a=-w’xas the defining equation of simple
harmonic motion.

(e) recognise and use x = x, sinwt as a solution to the equation a = -w?x .

(f) recognise and use v =v,coswt and v =+tw (x§ - xz) )

(g) describe, with graphical illustrations, the changes in displacement, velocity
and acceleration during simple harmonic motion.

(h) describe the interchange between kinetic and potential energy during simple
harmonic motion.

(i) describe practical examples of damped oscillations with particular reference
to the effects of the degree of damping and the importance of crltlcal
damping in cases such as a car suspension system.

(i) describe practical examples of forced oscillations and resonance.

(k) describe graphically how the amplitude of a forced oscillation changes with
driving frequency near to the natural frequency of the system, and
understand qualitatively the factors which determine the frequency response

and sharpness of the resonance.

() show an appreciation that there are some circumstances in which resonance
is useful and other circumstances in which resonance should be avoided.
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Periodic motion, where the pattern of movement repeats over time, is ubiquitous,
and arises for example when objects are perturbed from a condition of stable
equilibrium. While much of the motion we have considered is non-periodic, we
have studied uniform circular motion, which is periodic and regular. Even in one
spatial dimension, there can be complicated types of periodic motion.
Nonetheless, we can gain a deep understanding of periodic motion by analysing
the mathematically simplest case of free oscillations, known as simple harmonic
motion (SHM). Such sinusoidally varying motion is essentially a projection of
uniform circular motion, and provides a mathematical basis upon which to
describe more complicated oscillations. Naturally, we revisit concepts in
kinematics, dynamics, forces and energy in trying to understand SHM.

Links Between
Sections and Topics

When we consider a system of connected particles, the idea of single particles
undergoing oscillations is the starting point that leads on to the idea of waves
within the system. While we have seen how powerful the particle picture is, it

turns out that the wave picture, generalised beyond classical mechanics, is '
equally fundamental for describing and understanding the physical universe.

With waves, we move conceptually from physics of particles to the physics of
continuous media. All waves are disturbances which result in oscillations. The
oscillations then spread out as waves, which carry energy and can result in
disturbances far away. Waves are a means of transmitting energy without the
attendant transfer of matter. Remarkably, one of the many surprises of nature is

that electromagnetic waves can travel through a vacuum, an example of field
oscillations that do not require particles.

We can also discuss wave mechanics, as waves interact, though in a
qualitatively different way from how particles interact. The principle of
superposition allows accurate characterisation of interaction of waves.
Interference and diffraction are important wave phenomena due to the
superposition of waves. However, there is actually no clear distinction between
interference and diffraction. The difference in the usage of the terms is mainly
historical. Many of the ideas introduced during the study of waves in this section
will later be important for appreciating the limitation of classical physics in.

explaining the behaviour of matter on the atomic scale and understanding
quantum wave-particle duality.

Abblicati Oscillations and waves play important roles in engineering and nature. In nature
pplications and . : ; ; ey B =
relevance to daily molecules in a solld.osglllate ab_out their equnlllbrlL_Jm position; electromagnetic
life waves consist of oscillating electric and magnetic fields, and waves are present
everywhere, e.g. light travelling from the Sun to Earth, water waves and sound
waves. The study and control of oscillation is needed to achieve important goals
in engineering, e.g. to prevent the collapse of a building due to waves created by
an earthquake. Furthermore, diffraction gratings allow us to determine the
frequencies of light sources ranging from lamps to distant stars. Optical
engineers also create optically variable graphics (OVG) on credit cards, which
incorporate diffraction grating technology, as an anti-counterfeiting measure.
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Systems and Interactions

e A wave is a source of
disturbance that can
transfer energy and
momentum through time
and space

 Interaction of
electromagnetic wave

- with matter (e.g.
reflection, refraction,
diffraction, absorption,
scattering)
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Links to Core ldeas

Models and Representations

» Simple harmonic motion of a mass
characterised by a restoring force
that is proportional to its
displacement

« Mechanical wave model

« Wave nature of electromagnetic
radiation

« Superposition principle, which is
used to explain wave phenomena
(e.g. standing waves, two-source
interference, diffraction)

« Common representations: e.g.
wavefront diagrams, displacement-
time graph (characteristic of every
particle), displacement-position
graph (snapshot of wave in time)

e Simplifying assumptions: e.g.
ignore dissipative forces like friction
and air resistance (negligible
attenuation)

Conservation Laws

e Conservation of
mechanical energy in
an SHM system

» The relationship
between intensity and
distance for a point
source

e The intensity
distribution of a
double-slit
interference pattern
obeys the
conservation of
energy
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10.1 Simple Harmonic Motion (S.H.M.

Introduction A periodic motion is one in which an object continually retraces its path at equal
time intervals. Many systems exhibit periodic motion. The molecules in a solid
oscillate about their equilibrium positions; electromagnetic waves are
characterised by oscillating electric and magnetic field vectors; and in

alternating-current electrical circuits, voltage and current vary periodically with
time.

An oscillation is a special periodic motion in which the oscillator moves to and fro
about an equilibrium position. This is also called harmonic motion. Simple
harmonic motion is a type of such a motion.

1)
Simple harmonic motion is defined as(?he motion of a particle about a fixed

point such that its acceleration is proportional to its displacement from the fixed
point and is always directed towards the point.
D

|

—

Mathematically, ac—x .

Kt &l'!,’lum““f‘-‘ fﬂ;r"f]ulh‘bl}u-rﬂ PO!’I\W

: R Sty 5 :
1.e. % a=-w'x [O"Pu!fhh’ constant

where a is the acceleration, x is the displacement from the equilibrium position
and ? is a positive constant, where w is the angular frequency of the oscillation.

}I Angular frequency is defined as the rafe of change of phase angle of the
~_Definition oscillation, and is equal to the product of 2x and its frequency (i.e @ = 2xf)

. The unit of w is radian per second (rad s™).

The negative sign in the equation indicates that the acceleration a acts in a
direction opposite to that of the displacement x.

‘acceleration of the object is not constant, it is not possible to apply the .
ematics equations in solving SHM problems.

2 with angular velocity. Even though the two
the same symbol , they are
‘motion, @ stands for angular
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" Characteristics of Fig. 10.1.1 illustrates the motion of a particle N in simple harmonic motion.
S.H.M. Particle N experiences a restoring force that is always directed towards the

equilibrium position O and oscillates between points A and B. The displacement
x from point O, the velocity v and acceleration a of particle N are also indicated in
Fig. 10.1.1. The direction towards the right is taken to be positive.

L T
N slowing down : N speeding up
towards A a(+) —> | <— a() towardsO
|
v (') e : «— V (')
Body vibrating in a A O: g B
straight line x(-) ] X (+)
I
V) —s | —v®
N speeding up | N is slowing down
towards O a(¥) —» | & a(-) towardsB
> Max . ™
- e i Y Fig. 10.1.1
max anhipha
Vo hee o -ve ! . . : o
. The motion of particle N has the following characteristics:
g/
T ¢ -w || ® Its pathis a straight line.
W e ; : m\x!i value

e Itis symmetrical about the equilibrium position O. V

|| |0Al=]0B|=x,, where X, is the amplitude of the motion. ampbifude #
, dirplacome
e Amplitude is the magnitude of the maximum displacement of Fhle&par%jc!e

Definition , o .
from its equilibrium position.
Period T is the time taken to complete one oscillation.

(E.g. BOAOB)

2n 2r
Te=— | & |o~r

e Frequency fis the number of oscillations per unit time.

Definition

Definition

1

Thus T and f are related by the equation:|T = r ) @ =2rf

If Tis measured in seconds s, then f will be in hertz, Hz. (S.I. unit),

where 1Hz=1s",

e The speed at O is a maximum and zero at A and B.

e Acceleration is always directed towards O.

« The magnitude of the acceleration is zero at O and maximum at A and B.
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‘Displacement-Time  The variation of displacement from the equilibrium position x with time ¢ of
Graph particle N in Fig. 10.1.1, can be represented by a displacement-time graph.

Ifatt=0, x=+x, (i.e. N is at B), the motion of N is given by x = x, coswt .

1T b T degudn T—
X A {} I T\t'(-l {[' _[_L o 4 (" 3
’{-15|'1‘" Gl
+Xp

A 4
—

- Xo

Fig. 10.1.2

Ifatt=0, x=0 (i.e. N is at O), the motion of N is given by x = x, sinwt.
-_—~_——“‘“——;n
X A

+X,

-xo

Fig. 10.1.3
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Changesinx,vand Consider the case x = xp at t = 0, ie at point B, displacement is given by
a during S.H.M.

X = X, coswt (Refer to Fig. 10.1.4)
X smwh

VX tag )

s - wt Xuj[nw]

X varies with ¢t

By calculus, we have _dx
dt

= —:?(xo cos wt)

v =-Xx,0Ssinwt (Refer to Fig. 10.1.5)

v varies with ¢

and

dv
a=—
dt

TH - U\)Q\ :-g?(-xoa)sinwt)

. a varies with t nu i\ \ﬁ Y a=-x,w* cos ot (Refer to Fig. 10.1.6)
hru bid ( ke cor,on)

Also,
v =-x,0Sinwt
=-wX,sinwt < hef und qug, fme (Lr‘}"‘.’\inr\t

=-wX, (i\/1 -cos® a)t)
= i—cu\/xoz (1-cos’ wt)

2 2 2
iw\/(xo - X, cos® wt ) 3 ‘“N .
ey vV o

— ) acoman b
femdigipe e— | v=to (x,2-x%) (Refer to Fig. 10\1 7)\.\{&&@‘
fm m u]\u Q}\w Q‘ J/

and A Merend J p! I}\

1l

Il
H+

a=-x,0° cos wt
= -’ (X, cos wt)

i a=-w'x (Refer to Fig. 10.1.8)

Hé;ébfhuc_él_ - The graphs on the next page show how the displacement, velocity and
lllustrations acceleration of N in Fig. 10.1.1 vary with time during two complete cycles.

max 0! whonpin @ o cod =1
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e A Y S —
: i ; : | i 1
i ] 1 i | ] 1
X, e ; = ; [—
1 | 1 I | i i
\ 1 ] 1 /:\ 1 ] | /
: 1 ] 1 1 | 1 !
] ] 1 1 1 ] I
| ' ! 1 1 1 I
X =X, coswt I R frie—t—3 —_— ————p Fig. 10.1.4
..71 = T 1 ] {l 2T
§ NEN N
\ ] [ ] 1 T [} ]
| \/ . \'/ '
1 ' ' 1 1 i I
X, 1 " : 1 . 1
1 I 1 i i i I
1 I ] ] 1 I 1
i ' 1 i | I I
1 T | ] : 1 T
Av/ims] ! i i ) i i
1 ] ] 1 1 1 1
I 1 ] ] i 1 1
S P N S S S S
; 1 1 ] 1 ! 1 1
EIIEIEVANEIEEVAN
at L 1 1 f 1 1 1 i
J "Lr ] |/ 1 \ ] n/ 1 \ t/s
V=-X,wsinot | 1 SRS SRS (. SUPUL. P S NP, Tt Fig. 10.1.5
opyolite 1 1 3y )\ L / ! 7
QU AN A VA
’ | i 1 ) I I !
f I/ 1 1 1 \I/ ! ]
| A - < + 4 v 1 L
i 1 | 1 i 1 1 1
1 1 1 ] 1 1 I
| | 1 1 1 1 1 I
‘! ) T ] T ll ] T
‘ Aafms? i ; ; : i i
{ 1 i 1 1 1 !
’ 1 ] : 1 i 1 I
| A W
/ | /1\ | i ' /n\ I
f i 1 ' | 1 1 I
{ § i 1 1 1 1 1
i | 1 1 | 1 !
J 1 1 | ! 1 I
0 . / : \ '/. ! \ "
a=-x,0° cos wt : T Y. N Y B Fig. 10.1.6
L
] ] i | [
1 ] n/ 1 1
Xy’ ; : 43 : :
| | | | |
i I I 1 1
: | I I 1

1" quarter of cycle
2" quarter of cycle
3 quarter of cycle

4" quarter of cycle

When N is speeding up from B towards O, both v and a are directed towards O
(both negative).

When N is slowing down from O to A, v and a are in opposite directions: v is
negative but a is positive.

When N is speeding up from A towards O, both v and a are directed towards O
(both positive).

When N is slowing down from O to B, v and a are in opposite directions: v is
positive but a is negative.

The cycle then repeats.
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The following graphs show how the velocity and acceleration of N in Fig. 10.1.1
vary with displacement.

v=ta/(x,’ -x*)

a=-w’x

’-r"ﬁuue\ ; 'LD"
] ot

-1
Avims

+Xo

-
N

-Xo +X, > x/m
-X o0
Fig. 10.1.7
salms?

______________ +Xo0°

_X-o 0 E+x0 ! XI m
5
'XO(.()Z

Fig. 10.1.8
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Example 1 A particle describes S.H.M. in which the displacement is given by
b0 equ i x =0.05cos (4xt)
g -kn\*-‘?% ‘where x is in metres and t in seconds.

(a) What is the amplitude of the motion?

(b) What is the period of the motion?

(c) What is the maximum velocity of the particle?

(d) What is the maximum acceleration of the particle?

™ f

\ Solution
S q) W{M : b.0fm
b w4
T
T: 1‘&_ ¢ 50 geconds (——
() [haX . moutzj : W Xom I‘." Ul U -/U"" ¥
W Xo Mami g, uoew.} < () Y
’ KU.DS) Qlf Tl') /
‘ ' =0 67 Bveyg!
1) wax queeragin : 0T ™ la] <ty
: Q(‘fﬁ)i (0.03) ! . Q9
3 } N mroX aocoloratinn = 0 ),
54 QUITE
1 10ay
Example 2 Figures (a) and (b) below show how the displacement x and the acceleration a of
(JB2111110) a body vary with time when it is oscillating with simple harmonic motion.
x/m alms™
2

Figure (a) Figure (b)
What is the value of 77

Solution
From Figure (a), at t = 0, xo = 2 m and from Figure (b), Amay = —18 m 52
-ty -13 | |
g ¢ =Y PTED gy s wth
fL : \
w 9 1
T AL
W
T voyg,

10
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Free Oscillations

e ——

Models for S.H.M.

Spring-Mass System

‘}\ﬂ:&ig‘j}'—”lﬂ?a\}‘ ~kx =ma

Comparing with a = -o’x, w:J-E and T=2;r\/E ?’"“twmu‘« b [m
m k iny. i’"‘t 8 ]L

If an object is displaced from its equilibrium position and then released, it
oscillates at its‘natural frequencyi about the equilibrium position.

Free oscillation occurs when an object oscillates with no resistive and
driving force acting on it. Its total energy and amplitude remain constant

with time.

Examples: a swinging simple pendulum and a loaded spiral spring bobbing up
and down

Two common mechanical systems are used to illustrate simple harmonic motion:
spring-mass system and simple pendulum.

Horizontal

Consider a block of mass m attached to the end of a spring of negligible mass
and force constant k, with the block free to move on a horizontal frictionless
surface. When the spring is neither stretched nor compressed it is at its
equilibrium position as shown in Fig. 10.1.9.

Fig. 10.1.9

The block is displaced a distance x to the right in Fig. 10.1.10.

|
F, restoring ‘

' X
x=0

Fig. 10.1.10

The restoring force exerted towards the left by the spring on the block is
Fresroring = —kx

It is the resultant force acting on the block, hence by Newton's 2™ law of motion:
F =ma

restoring

{2

11

ard
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Vertical

A vertically suspended spring of negligible mass and force constant k is
stretched by an amount e when a block of mass m is hung on it and remains at
rest at the equilibrium position. The block is then given an additional downward
displacement y (positive direction downward) and released as shown in Fig.

10.1.11.

{Y \\\ \.\ fr.

N

RS
\\\‘*\\ku. \\. \\L

Un-stretched - - -

- o e ==

Fig. 10.1

I

]
|

:a—f“o

1

The initial static equilibrium is characterised by a balance between the elastic

force and the weight of the block:
¥

mg = ke

cM
hdlmchj;

(k)

Once the block is pulled down and released, the restoring force is

Fmsroring = _k(e + Y) +mg
QH'I‘[\}\’“\T rod o Pimuler ‘”f‘SUIU l:\-\“ Ak
t’ 1 nd .
? 3 By Newton's 2™ law: .
= fi $ <A Freston‘ng =ma
f T_]}t -k(e+y)+mg=ma

-ky =ma

Sqqre

I ¢

Comparing with a=-o’y, | o= \[E
m

By comparing the horizontal and vertical

l J Y overdion/
}' hnet 'l \
T= 2”\/-_!?__1 .
k
l h"ﬂ 5
spring-mass asystems, it can be

concluded that only the mass and spring constant determine their motions.

12
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Simple Pendulum A simple pendulum consists of a bob suspended by a light string. The forces
acting on the bob are the tension T in the string and the weight mg of the bob.
When the bob is displaced by a small angle 8 (<10°), it is displaced by a distance
s=L0.
[ ok ;/\. & sl b )
L T, tension
| AN T S
mg, weight
. Fig. 10.1.12
The restoring force is the tangential component of mg:
Fresforing =-mg sin@
sy dea ;\ A5 L ik A
L 3
T, tension
!(_.......:.2'..:....-% T2 i o
mgsin@\ |\
\ A
B G a
B 2] t (
y Mg cos . Nt,rj wgi of
. Fig. 10.1.13 Nl Lo n)
Since 0 is very small, by small angle approximation, Pfeg) T
RN
Sin0 =0 and Fypipg = ~Mg0 = -Mg 7  adiant
| '
By Newton’s 2" law: ¥
Boys y o
’ P

restoring =ma

mg S ~ma
- — e
L

L V2 A~
Comparing with a = -w@’s,

= | and T=2;r\/§
L g

13 =
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Example 3

An object of mass 0.20 kg is hung from the lower end of a spring. When the
object is pulled down 5.0 cm below its equilibrium position O and released, it
vibrates with S.H.M. with a period of 2.0 s.

(a) What is the extension of the spring when the mass is hung at rest from
the lower end of the spring?

(b) What is the speed of the mass as it passes through O7

(c) What is the magnitude of its acceleration when it is 2.5 cm above O7?
(d) Through what distance will the object move in the first 0.75 s?
n’l:b.ub Xn:f‘bc;m T: Q_.Of

1 ._brm

Solution

) \‘q,:k{ 9 (1\ : |-wix

T=‘LI‘YJ:—‘{%-
Lo: 1 {o2

ke 193 JL};-P)
181 0.1

Ly
SERELY

]a) Lher brasr l:as‘m
(D 5 ‘LL_F__

Lo
O.of m

xo’
Vo«

o.\gms-n

™
=

» 1‘*""0\;.3\ 0)

(5% )tes9)

(l

]

EARIRS

.20t
d) m».} TPRICRIE, ey |
Mkzlmwwﬂi rdow 2qm f’“'.
L.

at  nqathie
I Y
-5 0 (TN:)

a t: l;;ijj ¥ o -5 cu('ﬂ'(n&!))
: 3. em

be. Wedeud ) 3.5 gabore eqpm

(15

v

Vo

8.99m
C35f)

»)

twX,

v

X+ - 1.0 ¢S

(ls.f-)

Fofrhon, H_mtg th yrores L (S.v 4
13) . 33um Ak fid 838,

Example 4 A horizontal plate is vibrating vertically in S.H.M. at a frequency of 20 Hz. What is

the maximum amplitude of vibration so that fine sand on the plate always
remains in contact with it? N

2]
- e
M ﬂ\}n\q

’ “\ﬁa i)

4

g)'

Solution .~ sand particle

\ top of oscillation

plate

-------------------- equilibrium position
\

Ly

--‘:"

l\l) 0 - T‘V' Iq,\l Yo Fun—ag '-‘\{°l'dtl)‘~“lk \f\‘tﬁ)

5 3.(1 70 Ponld ondat) fue N ghaad be roreAbay o
@<y
wtx <

U o'b:f

AR

(w('u)) !

0 DO

x <

<

14
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10.2

R T =

Interchange For a simple harmonic oscillator, the system does{no work against dissipativel

between Kinetic and forces) and so its total energy remains constant with time.

Potential Energy
The kinetic energy of an oscillating body clearly varies during the cycle. There is
a continual change of energy from kinetic energy to potential energy and vice-
versa. At any instant during the motion, the total energy of tve system is equal to
the sum of its kinetic energy and potential energy. Y gravihiv al

i
Eloghy e ar LUH‘

Variation of Energy  Suppose that a body of mass m, which is attached to a light spring, oscillates on

in S.H.M. a horizontal frictionless surface about the equilibrium position O:
. | 4
Frestoring ! frictionless
et surface
T Tmae—
A 0oXx B
x=0
Fig. 10.2.1

Let us consider an ideal oscillator, which would continue to oscillate forever once
it is started. We are assuming that there is no energy loss as a result of friction or
other resistance to motion.

Let us now see how the kinetic and potential energies of the oscillator vary with
distance from the equilibrium position.

Ei varies with x The kinetic energy E at a distance x from its equilibrium position is given by
B, = Lo
2
1 2 .2 )2
=—m|tw,/(x,? -
2 ( o ( 0 X )
1
E, =—ma®(x,? - x*
® omi> =g m (- 0)

where X, is the amplitude of the motion.

Ej varies with x The potential energy E, at a displacement x from its equilibrium position is given
by
12
E, =—kx

2

1 2,2
@ E, =5 Mo’

Gl’ N / LP A : }JLL( Ur\""‘j‘}

15 ==
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The total energy E at displacement x is given by
E=E,+E,

1 1
=—ma’ (x,° - x*)+ = maw’x*
Eis constant 2 2

E - mo'x;
2

The following graph in Fig. 10.2.2 shows the variation of Ey, E, and E with
displacement x:

aEnergy /J

Variation of Ey, E; and
E with displacement x

\
S— N\t
. \ e
0 *+Xo x/m

> 11 PE fadey N\OMU |
Fig. 10.2.2 ‘:J' ; : Jf‘ 'E\ptn Perdof,,
I ) y o Lovual fpnj~ .

Let us now see how the kinetic and potential energies of the oscillator vary'wﬁﬁ .

time. v Sytien,

Suppose X =x,coswt and v =-X,wsinwt, the kinetic energy E and potential
energy E, at time t are given by .

E, L.
2

= %m(—xoa) sin wt)*

Ey varies with t 1 e e mihd ned b
E, =5 M, sin Bl |~ it
and
1, 2
Epzakx
1

:Ek(x" cos wt)?

= %kxf cos’® wt

Ep varies with t

P

1
E = Em(ozxoz cos? wt

16




E is constant with t

Variation of Ei, E, and
E with time ¢
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Thus at any instant the total energy is given by E = %m(uzxoz, as before.

The graph in Fig. 10.2.4 shows the variation of &, Ep and E with time .

x/im

4Energy / J

_ AV/ \
B

’ }
\/ ; Hs

T

ITL

The frequency of the energy variation is fwice that of the motion.

Fig. 10.2.3

Fig. 10.2.4

17 —
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Example 5 A mass of 0.50 kg is attached to a light spring which has a force constant of
20 N m™. The mass is displaced a distance 5.0 cm below the equilibrium position

Refer to Fig. 10.1.11 and then released. Calculate
(a) the maximum value of the potential energy of the oscillating system,
assuming it is zero at the equilibrium position.
(b) the maximum velocity of the mass,
(c) the distance from the equilibrium position when the kinetic energy is one
quarter of its maximum value.

(Take the zero level for gravitational potential energy to be midway between the
un-stretched and equilibrium position.)

Solution
(a) Assuming potential energy of the oscillating system at equilibrium is zero.
EEEENIEEEEED Ateqm: ke=mg = e= _”';(_9' .

= Max. potential energy when mass is at its max. displacement below
=~  eqm position = work done by external force to bring mass to that position
lncreasé in E.P.E. — decrease in G.P.E.

‘ r-uljil = [—;—k(e «1—0.050)2 —Ekez]—mg(O.OSO)

. [%(zo) [% +o.oso) (20)(0 i 81) } (0.50x9.81)(0.050)

=0.025J
L) may XE sy PE
: a
‘T (0.53) VM?.'SX‘;SSN.Q
VN}& ! [ P T !B.'ﬂmg" .

\j 1.(.3-1.- .‘q\jnm
L ' S‘ .
) Y
JEESY QLY
0.0M3wn

Note: See self-check Q9 for the energy-displacement graphs
18 —
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‘Damped and Forced Oscillations: Resonance iy

Damped Oscillations The. oscillatory motions that have been discussed so far have been for ideal

Definition of damping

Degrees of Damping

systems.

A real oscillating system is opposed by dissipative forces, such as friction and
viscous forces, which cause the amplitude of the motion to decrease with time.
The system then does positive work: the energy to do this work is taken from the
energy of the oscillation, and usually appears as internal energy of the
surroundings and the system.

Damping is the process whereby énérgy is removed from an oscillating syster)

For a damping force which is proportional to the velocity of the mass, the decay
in amplitude is exponential. This means that the amplitude decreases by the
same fraction during each vibration. ~, x, . . bt

Yo & Ry
A full_mathematical analysis of damped harmonic_motion shows that the
frequency of the damped motion is /ess than the undamped frequency!

The degree of damping depends on thé magnitude’of the Tetarding force (or the
amount of resistance to the oscillation). In practice, the motion of an oscillator will
depend on the magnitude of the damping. In certain cases the damping may
prevent the system from oscillating and it will just return to its equilibrium

position.

The following graphs show how different degrees of damping affect the
displacement of an oscillating body.
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Three Categories of
Damping

Energy Variation of
Damped Oscillations

.Lr'ght Damping

Critical Damping

Heavy Damping
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Light Damping results in oscillations whereby the amplitude decays

exponentially with time. The frequency of oscillations is slightly smaller than the
undamped frequency. (Fig. 10.3.2)

Critical Damping results in no oscillation and the system returns to the
equilibrium position in the shortest time. (Fig. 10.3.3)

Heavy Damping results in no oscillation and the system takes a long time to

return to its equilibrium position. (Fig. 10.3.4)
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Importance of Critical  The degree of damping of a mechanical system is important. Too little damping
gamp'”g:' Cag results in a large number of oscillations: too much damping leads to there being
uspansion System too long a time when the system cannot respond to further disturbances. This is
illustrated well by the trouble which car manufacturers take with the suspension
of cars. The suspension is the link between the wheels and axles of a car and
the -body and the passengers, and consists of a spring which is damped by a

shock absorber.

Without the suspension system, the wheels’ vertical motion, due to road
imperfections (e.g. a bump), is transferred to the car frame, which moves
upwards, and the tires can lose contact with the road completely. Then, under
the downward force of gravity, the tires can slam back onto the road surface. The
suspension system will absorb the energy of the vertically accelerated wheel,
allowing the frame and body to ride nearly undisturbed while the wheels and tires
follow the bump in the road.

Shock Absarber
and Spring .

. Steering

(Diagram from
HowStuffWorks website)

A shock absorber
consists of a piston that
moves in a cylinder
containing a viscous
fluid. Holes on the piston
allow it to move up and
down in a damped
manner and the amount
of damping is adjusted so
that the suspension
system is close to -
condition of critical Lower -
damping. Control

CaLr Jugpeon S\gﬂbm Aum

A good suspension system is one in which the damping is critical or slightly
under critical as this results in a comfortable ride and also leaves the car ready to
respond to further bumps in the road quickly.

Fig. 10.3.9 shows that by the time the car has reached P the shock absorbing
system is ready for the drop in road surface. After Q, it is ready for another
bump.
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expansion EJ expansion a
" PR x=0 :
The springing of a car compression ,- Moo (disturbance) ,
suspension Is critically W i . - + 1
damped when it goes (disturbance)
over a bump; the aalaes -

e

passengers in the car
quickly and smoothly
regain equilibrium.
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Fig. 10.3.9
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Without the shock absorber, a car spring, after a compression, will extend and
release

the energy it absorbs from the rise of a bump at an uncontrolled rate. The spring
will continue to bounce at its natural frequency until all of the energy originally
put into it is used up. A suspension built on springs alone would make for an
extremely bouncy and uncomfortable ride and, depending on the terrain, an
uncontrollable car.

A heavily damped shock absorbing system would still have a compressed spring
by the time P is reached and so would not be able to respond to the sudden drop
in road surface. So long as there are bumps on a road then these must have an
effect on a passenger in a car. The shock-absorbing system can only reduce the
forces applied. It cannot eliminate them because, clearly, in the above diagram,
the passenger must rise and drop eventually by the height of the bump.

Instruments such as analogue balances and electrical meters are also designed
to be critically damped so that the pointer comes quickly to the correct position in
the shortest possible time without oscillating.

Forced Oscillation

and Resonance

Since all macroscopic mechanical oscillations are damped, energy is continually
being lost from the system. If we wish to maintain the vibrations at constant
amplitude, then energy must be supplied at the rate at which energy is being
dissipated to the surroundings and within the system. A force must therefore be
applied to oppose the damping forces.

s —

external driving force. The force is also know as a driver.

Demonstration Using Barton’s Pendulums

Fig. 10.3.10 shows a setup of Barton’s pendulums. It consists of a number of
very light pendulums (made from paper cones) of varying length (A, B, C, D and
E) and one pendulum with a heavy bob (X). This massive pendulum is called the
driver pendulum. All the pendulums are suspended from the same string.

The setup is used to demonstrate what happens when a system is made to
vibrate at some frequency other than its own natural frequency of vibration.

Fig. 10.3.10
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Forced Oscillations

Resonance

Variation of Amplitude
of a Forced Oscillation
with Driving
Frequency
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The motion of the Barton's pendulums can be divided into two distinct sections.
Initially, it is very chaotic, the pendulums tend to oscillate at their own natural
frequency (determined by their length) while the driving pendulum tries to make
them all oscillate at its own frequency. Gradually, the driving pendulum wins and’
the pendulums are all forced to oscillate at a frequency which is not the same as
their own natural frequency. Energy is being transferred from the driver
pendulum to the driven pendulums. This is an example of forced oscillations.

The Barton's pendulums experiment shows that the forced vibrations are at the
maximum when the natural frequency of the driven system is equal to the
frequency of the driving oscillator. Pendulum C, which has the same length and
thus has the same natural frequency as pendulum X, is observed to oscillate with
the largest amplitude. This is an example of resonance. At resonance, maximum
energy is being transferred by way of the string from the driving system to the
driven system.

Fig. 10.3.11 is a frequency response graph which shows how the amplitude x, of
a forced oscillation depends on the driving frequency f when the system is
damped at different degrees.

: (i) No damping
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2 (i) Small damping
3
=
3
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4
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Enu' # { D’\Q '\ 1 E‘ﬂ .
Py of amglidugd | Y damping

-ti-u\k a vy L..GJ(‘_»,

l -
Driving frequency/Hz
Natural frequency fo

Fig. 10.3.11

For a forced oscillation, when conditions are steady, the following observations
are made:

e The amplitude of a forced oscillation depends upon:
1. the damping of the system,

2. the relative values of the driving frequency f and the natural frequency
f,of the system (i.e. how far.fis fromifs).

e The oscillations with largest amplitude (i.e. resonance) occur when f is
approximately equal to £,
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The sharpness of resonance is determined by the degree of damping:

1. When there is no damping, the amplitude of resonance becomes infinite.
(Fig. 10.3.11(i})

2. When damping is light, the amplitude is large but falls off rapidly when the
driving frequency of the body differs slightly from the natural frequency of
the body. The resonance is sharp. (Fig. 10.3.11(ii))

3. When the degree of damping increases, the amplitude at resonance
decreases. The curve falls off gradually and maximum amplitude occurs
at a frequency that is lower than the natural frequency of the body. (Fig.
10.3.11(iii))

4. When damping is critical or heavy, the resonance is flat. (Fig.
10.3.11(iv),(v))

Resonance occurs when a system responds at maximum amplitude to an
Definition extemal driving force. This occurs when theTfréquency of the driving force is)
. : -equal to the natural frequency of the driven system!
-@,h(‘ﬂ:_b\
Circumstances in -Tuning a radio receiver (Electrical resonance)

which resonance is
useful

Y quele re

The electrons in a radio receiving aerial are forced to vibrate by the radio wave
passing the aerial. When we tune the receiver, we are making the natural
frequency of the electrical circuit equal to the frequency of the signal. Hence the
b te urkanly | tuning circuitry uses resonance to isolate and amplify the signal of the required
frequency.

Increasing the intensity of a note produced by a string in a musical
instrument (Acoustic resonance)

This is done by coupling the vibrating string to a resonator. The air inside a cavity
(e.g. a guitar body) and the material of the instrument (the thin wooden body of
the guitar) all vibrate producing much greater vibrations in the surrounding air
than would be produced by the string alone.

Magnetic resonance

. Energy from strong oscillating magnetic fields is used to cause the nuclei of
atoms to oscillate and emit radio frequency signals. In any given molecule there
will be many resonant frequencies, and whenever resonance occurs energy is
absorbed. The pattern of energy absorption can be used to detect the presence
of particular molecules within any specimen and biochemists are using the
technique to study complex molecules and the part they play in biological
processes.

Magnetic resonance is also being used instead of X-rays as an imaging system
(MRI) in the medical field. The radio frequency signals emitted are made to
encode position information by varying the magnetic field. The contrast between
different tissues is determined by the rate at which excited atoms return to the

gquilibrium state. One major advantage of magnetic resonance used in this way
is that no ionising radiation is involved.
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Circumstances in
which resonance
should be avoided
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However, resonance is not always useful.

All mechanical structures have one or more natural frequencies, and if a
structure is subjected to a strong external driving force that matches one of these
frequencies, resonance is said to occur and the resulting oscillations of the
structure may rupture it.

At Angers, France in 1850, a French infantry battalion was marching over a
suspension bridge when it collapsed, resulting in the deaths of 220 men. Since
that time, it has been common practice to order soldiers to break step when

crossing a bridge. The soldiers’ marching caused sufficient vibration and twisting
to break the bridge.

A more modern bridge disaster occurred in 1940 when wind-induced oscillations
caused the collapse of the Tacoma Narrows Bridge in the U.S. state of
Washington. The bridge's natural mode of vibration coupled with the wind forces,
produced unstable oscillations with increased amplitude that were beyond the
strength of the suspender cables.

Resonance was also the cause for the collapse of some buildings during a major
earthquake in Mexico in 1985. Many intermediate-height buildings collapsed
because their natural frequency matched that of the seismic waves, whereas
taller or shorter buildings were unaffected.

A more mundane example of resonance is the way in which the bodywork of a
bus can vibrate violently at a particular engine speed.

As such, engineers have to carry out elaborate vibration tests on model
structures of, for example, bridges, buildings and aeroplanes before they are
satisfied that the design features will prevent extremely large amplitudes from
building up in the system.
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Relationship
between Uniform
Circular Motion and

\angufnr velocity w
- S.H.M. ' an n 0
p)
5"’“;0’ ws (o)
gy " gy
;‘ "-’r'h,m i 69
e,
. Point P moves in a circle of radius x, at a steady angular velocity w. N is the
projection of P to the diameter AOB of the circle. As P moves steadily round the
circle, N moves to and fro along AOB.
The centripetal acceleration of P is x,o’, directed towards O.
Assume that t = 0 when 8 =0 (i.e. = 0 when x = x, or when the point N is at B).
Afteratime t,.
¢ =wt
X =Xx,c0s8 = x, cos wt
The acceleration of N is the component of the acceleration of P parallel to AB:
a=-x,0°cosé
The negative sign indicates that the acceleration is directed towards O.
We can write
a=-x,0° coso
= —X,w* coS wt
. = -® (X, cos wt)
= -w®X

Thus N is in S.H.M.

The period of N (time taken for N to go from A to B and back again) is given by
it
0]

The model shows that when a point moves in a uniform circular motion, the
projection of that point to the diameter of the circle moves in S.H.M.

detdas eshom ta Lo Mﬂm\l- « THM ke rn)u:\bl por pendiclarty
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Phase Constant In general, x = x, cos(wt + )
X

"° 'f‘;\“/\\rf\ t

i to — -— —- ———— -—

¢ is the phase constant or the initial phase angle.
The phase of the motion is the quantity (wt +¢).

Xo and ¢ are determined uniquely by the position and velocity of the particle at

t=0.E.g. if the particle is at x=x,at t = 0, then ¢ = 0. .
Phase Difference A graph of x = x, cos (et +¢) is the graph of x, coswt displaced to the left by a
time interval 2.
w

The motion described by x = x, cos (a)t +¢) is not in phase with that described
¢

by x,coswt. It is out of phase by angle ¢ (radian) or time £. The plus sign
w
indicates that this motion leads by time ¢ and so the graph is displaced to the
(0]

left.

If the motion was described by x = X, cos (ot - ¢) . the graph would be displaced

to the right. This motion would be said to lag by time 2.
w

Phase difference between two oscillators is the fraction of a complete oscillation
by which one is ahead of the other. It can be expressed as a fraction of an
oscillation, or, more usually, as an angle, measured in radians.
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Example [ N
x{n x:=xn005((‘)l+%‘] X, = X, cos(exX)
+Xo \ 7 "
f
\ ,'
t/s
\ \ \,’
\ .
‘\\ ; \
x| | .
<
/3
(4]
. The motion described by x, = x, cos(a)t + %) is not in phase with that described
) P : . /3 .
by x,=x,coswt. It is out of phase by 3 radian or time o The plus sign
indicates that x, leads x; by time / = T/6 and so the graph is displaced to the
left. The motion described by x, = x, cos(mt ~%) is the graph of x; displaced to
. L . w3 _
the right. x; is said to lag x; by time — =T/6.
w
The phase difference ¢ between two waveforms P and Q having the same
period can be calculated using displacement
Af_9
. T 2x
2r
= —At
¢ T
“Example  Refer to the graphs in Fig. 10.1.4, Fig. 10.1.5 and Fig. 10.1.6. What are the time
difference and the phase difference between (i) v and x, (ii) v and a, and (iii) @
and x?
Solution

(i) The time difference is T/4, the phase difference is z/2 rad, and v leads x.
(i) The time difference is T/4, the phase difference is #/2 rad, and a leads v.

(i) The time difference is T/2, the phase difference is x rad, and x and a are
in ‘antiphase’.
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