

MASTERY

- Imaginary Number i
- Complex Numbers in Cartesian and Polar form
- Complex Conjugates
- Complex Roots of Polynomial Equations
- Argand Diagrams, Modulus and Argument
- Effect of Multiplying 2 Complexes

CHAPTER ANALYSIS

• Practice question types, there are only a few

- Understand the chapter from an algebraic point of view
- The new syllabus does not test drawing on argand diagrams

٠

Appears every year, typically 1 big question, or 2 small questions

• Constitutes approximately 3-7% of final grade

WEIGHTAGE

COMPLEX NUMBERS I

COMPLEX NUMBERS & IMAGINARY NUMBER i COMPLEX NUMBER OPERATIONS COMPLEX CONJUGATES COMPLEX ROOTS OF POLYNOMIAL EQUATIONS

Complex Numbers

A complex number is of the form:

Cartesian Form

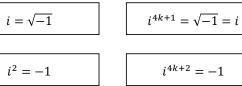
z = x + iy

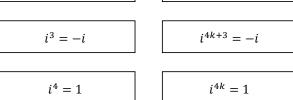
where x and y are real numbers and $i = \sqrt{-1}$

x is the real part of z, $\operatorname{Re}(z)$ $x = 0 \Longrightarrow z = iy$ is a purely imaginary number

y is the imaginary part of z, Im(z)Note that Im(z) **does not include** *i* $y = 0 \implies z = x$ is a real number

The set of complex numbers is denoted by $\ensuremath{\mathbb{C}}$





Imaginary Number i

Division of Complex Numbers

$$\frac{x+iy}{a+ib} = \frac{x+iy}{a+ib} \times \frac{a-ib}{a-ib}$$

$$=\frac{3+5i}{2-i} \times \frac{2+i}{2+i}$$
$$=\frac{6+3i+10i+5i^2}{4-i^2}$$
$$=\frac{6+13i-5}{4+1}$$
$$=\frac{1+13i}{5}$$
$$=\frac{1}{5}+\frac{13}{5}i$$

 $\frac{3+5i}{2-i}$

Complex Number Operations

Equality of 2 Complex Numbers

$$x + iy = a + ib \iff x = a \text{ and } y = b$$

Addition of Complex Numbers

$$(x + iy) + (a + ib) = (x + a) + i (y + b)$$

Subtraction of Complex Numbers

$$(x + iy) - (a + ib) = (x - a) + i(y - b)$$

Multiplication of Complex Numbers

$$(x + iy)(a + ib)$$

$$= xa + ixb + iya + i^{2}yb$$

$$= xa + ixb + iya + (-1)yb$$

$$= (xa - yb) + i(xb + ya)$$
Let $i^{2} = -1$

The **<u>complex conjugate</u>** of z = x + iy is denoted by z^* and defined as:

Cartesian Form $z^* = x - iy$

where x and y are real numbers and $i = \sqrt{-1}$

z and z^* are conjugates of each other and known as conjugate pairs

Observe that $\operatorname{Re}(z) = x = \operatorname{Re}(z^*)$ While $\operatorname{Im}(z^*) = -y = -\operatorname{Im}(z)$

Complex Conjugates

Useful Properties:

- 1. $(z^*)^* = z$
- 2. $z + z^* = 2Re(z)$
- 3. $z z^* = 2i Im(z)$
- 4. $zz^* = x^2 + y^2$
- 5. $z = z^* \Leftrightarrow z$ is real
- 6. $(z+w)^* = z^* + w^*$
- 7. $(zw)^* = z^* w^*$

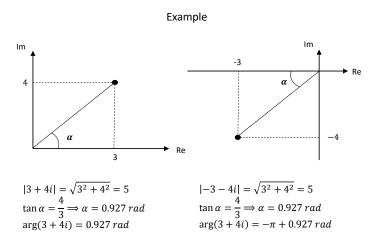
***Important Result: Complex Roots of Polynomial Equations Non-real roots of a polynomial equation with <u>real coefficients</u> occur in conjugate pairs

 $x^2 - 2x + 2 = 0$ has REAL coefficients to which $x = 1 \pm i$ are

conjugate pair solutions

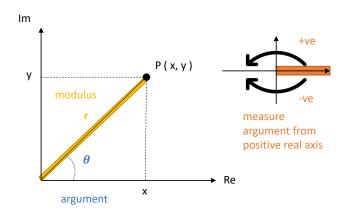
 $z^{2} + (-2 + 3i) z + (5 - i) = 0$ has IMAGINARY coefficients therefore the solution does not contain conjugate pairs COMPLEX NUMBERS II

ARGAND DIAGRAMS MODULUS & ARGUMENTS POLAR FORM OF COMPLEX NUMBERS MOD & ARG RELATIONSHIP WITH CONJUGATES GEOMETRICAL EFFECT OF MULTIPLYING 2 COMPLEXES



Geometrical Representation of Complex Numbers

Argand Diagram



r is the modulus of the complex number z, denoted by |z| $|z| = r = \sqrt{x^2 + y^2}$

 θ is the argument of the complex number *z*, denoted by arg(*z*) where $-\pi < arg(z) \le \pi$ and arg(z) should be given in **radians**

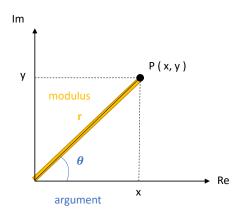
Complex Number addition and subtraction follow the vector parallelogram law of addition and subtraction

Multiplication & Division of Complex Numbers in Polar Form

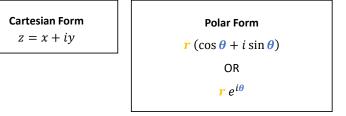
$$z_1 z_2 = r_1 r_2 \ e^{i(\theta_1 + \theta_2)} \qquad \qquad \frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

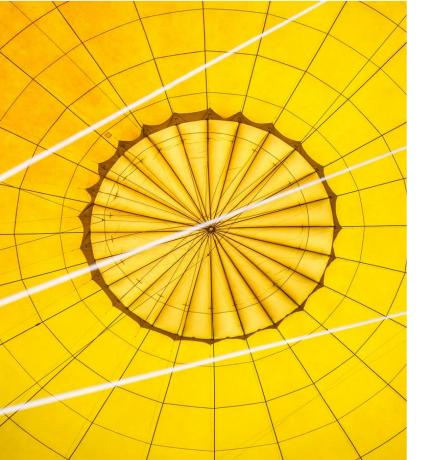
Other Useful Properties

Complex Numbers Polar Form

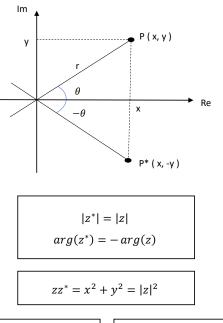


Any complex number can be written as:





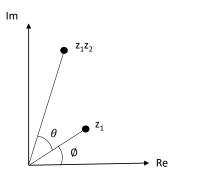
Mod & Arg Relationship With Conjugates



$$z = r e^{i\theta} \qquad \qquad z^* = r e^{-i\theta}$$

Geometrical Effect Of Multiplying 2 Complexes

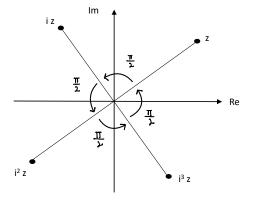
Multiplying 2 Complexes



$$z_1 z_2 = r_1 r_2 \ e^{i(\theta_1 + \theta_2)}$$

Scale a factor r of the length Oz_1 , followed by an anti-clockwise rotation through an angle of θ_2 radians about O

Multiplying a Complex by i



When complex number z is multiplied by i, the point represented by z on the argand diagram is **rotated anti-clockwise through an angle of**

 $\frac{\pi}{2}$ radians about O

For more notes & learning materials, visit: <u>www.overmugged.com</u>

'A' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'A' Levels!

Each H2 subject will have <u>3 crash course modules</u> which will cover their entire H2 syllabus.

The 4 hour module focuses on going through key concepts and identifying commonly tested questions!

The crash courses modules will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!



Shalyn Tay (Private tutor with 4 years of experience)

82014166 (Whatsapp)

@shalyntay (telegram username)

