ACJC CHEMISTRY DEPARTMENT

JC2 H2 Revision 2024

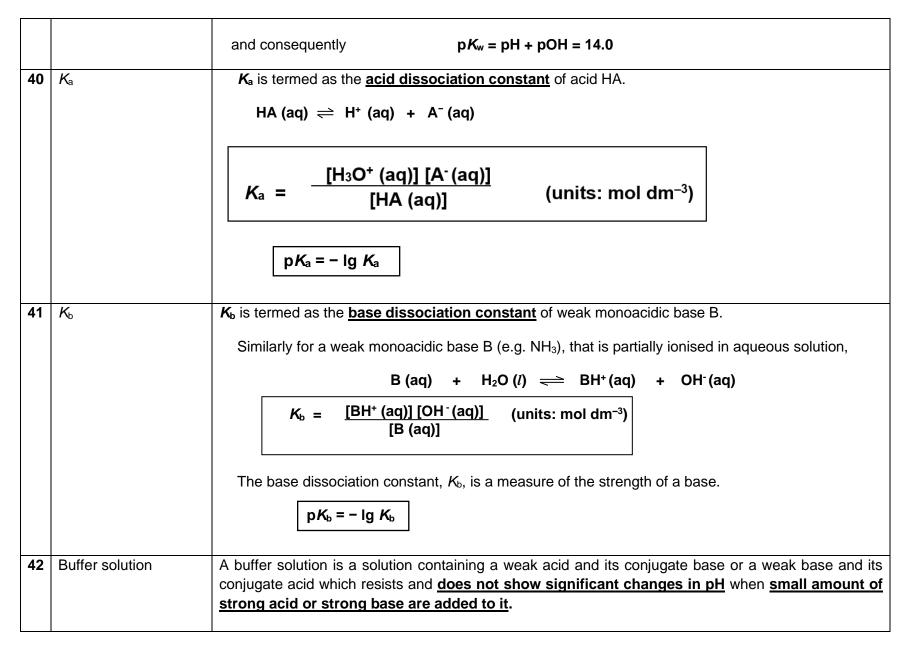
Summary of definitions for H2

This list of definitions <u>may not</u> be exhaustive. Students are to refer to the lecture notes given. Thank you, Chemistry Department

	Term	Definition
1	Relative isotopic mass	The relative isotopic mass of an element is the mass of an atom of the isotope relative to $\frac{1}{12}$ of the mass of an atom of ¹² C.
2	Relative atomic mass	The relative atomic mass of an element is the average mass of one atom of the element relative to $\frac{1}{12}$ of the mass of one atom of ¹² C.
3	Relative molecular mass (molecules)	The relative molecular mass of a molecule is the average mass of one molecule of a substance relative to $\frac{1}{12}$ of the mass of an atom of ¹² C.
4	Relative formula mass (ions/ ionic compounds)	The relative formula mass of an ionic compound is the mass of one formula unit of a substance relative to $\frac{1}{12}$ of the mass of one atom of ¹² C.
5	Mole	One mole is the amount of substance that contains 6.02 x 10 ²³ particles (atoms, molecules, ions, electrons).
6	Empirical formula	Empirical formula of a compound is the formula that shows the simplest whole number ratio of the atoms of the different elements in the compound.
7	Molecular formula	Molecular formula of a compound is one which shows the actual number of atoms of each element present in one molecule of a compound.

8	Disproportionation	A disproportionation reaction is a redox reaction in which one species is simultaneously oxidised and reduced.		
9	Mass number/ nucleon number	Defined as the total number of protons and neutrons in the nucleus of an atom		
10	Atomic number / Proton number	Defined as the <i>number of protons</i> in the nucleus of an atom		
11	Isotopes	Isotopes are atoms of the same element with the <u>same number of protons</u> but <i>different number of neutrons</i> .		
12	First ionisation energy	The first ionisation energy of an element is defined as the energy absorbed to remove one mole of electrons from one mole of gaseous atoms to form one mole of singly charged positive gaseous ions.		
		Example: Ca (g) \rightarrow Ca ⁺ (g) + e ⁻ Δ H ₁ = +590 kJ mol ⁻¹		
13	Second ionisation energy	The second ionisation energy of an element is defined as the energy absorbed to remove one mole of electrons from one mole of singly charged positive gaseous ions to form one mole of doubly charged positive gaseous ions.		
		Example: Ca ⁺ (g) \rightarrow Ca ²⁺ (g) + e ⁻ Δ H ₂ = +1150 kJ mol ⁻¹		
14	Atomic radius	Atomic radius is half the shortest inter-nuclear distance found in the structure of the element.		
15	Electronegativity	Electronegativity is a measure of the ability of an atom in a molecule to attract the shared pair of electrons in a covalent bond.		
16	Ionic radius	Ionic radius of an ion is the radius of the spherical ion in an ionic compound.		
17	Ionic bond	Ionic bond is the strong electrostatic attraction between two oppositely charged ions, formed by the transfer of electrons between the original atoms.		
18	Covalent bond	Covalent bond is the <u>strong</u> electrostatic attraction between <u>the positive nuclei of the two atoms and</u> <u>the bonding electrons shared</u> between them.		

40	On andiants have 1 /	A an andinate hand/also called a define equation (hand) a second with a start (a share the start) of		
19	Co-ordinate bond / dative covalent bond	A co-ordinate <i>bond</i> (also called a <i>dative covalent bond</i>) is a <i>covalent bond</i> (a shared pair of electrons) in which both electrons come from the same atom.		
20	Bond energy	Bond energy is the <u>energy absorbed</u> when <u>one mole of a given covalent bond</u> in a <u>gaseous</u> <u>compound</u> is broken into <u>gaseous atoms or molecules</u> .		
21	Metallic bond	Metallic bond is the strong electrostatic forces of attraction between the positive metal ions and mobile sea of delocalised electrons.		
22	Lattice Energy	Lattice energy is defined as the <u>energy released</u> when <u>1 mole of ionic solid</u> is formed from its constituent <u>gaseous ions</u> (at infinite distance apart).		
23	Hess' Law	The enthalpy change for a reaction is the same whether the reaction takes place in one step or in a series of steps and is determined by the initial and final states of the system .		
24	$\begin{array}{llllllllllllllllllllllllllllllllllll$	The <u>energy change</u> when <u>one mole</u> of substance is <u>formed from its constituent elements</u> in their standard states <u>at 298 K and 1 bar</u> . E.g. $\Delta H_{f^{\varnothing}}$ (Na ₂ CO ₃): 2Na(s) + C(s) + 3/2O ₂ (g) \rightarrow Na ₂ CO ₃ (s) Note: $\Delta H_{f^{\varnothing}} = 0$ for elements in standard states.		
25	Standard Enthalpy change of Combustion (ΔH_C^{θ})	The <u>energy evolved</u> when <u>one mole</u> of substance is <u>burnt completely in excess oxygen at 298 K</u> and 1 bar. E.g. ΔH^{ρ}_{c} (CH ₃ COOH): CH ₃ COOH(I) + 2O ₂ (g) \rightarrow 2CO ₂ (g) + 2H ₂ O(I) Note: ΔH_{c}^{ρ} is always exothermic. $DH_{c}^{\rho} = \frac{-\text{heat change}}{n_{\text{substance burnt}}}$		


26	Standard Enthalpy change of neutralisation (∆H _{neu} [∞])	The <u>energy evolved</u> when <u>one mole of water is formed</u> in the <u>reaction between an acid and a base</u> <u>at 298 K and 1 bar</u> . NaOH(aq) + $\frac{1}{2}$ H ₂ SO ₄ (aq) $\rightarrow \frac{1}{2}$ Na ₂ SO ₄ (aq) + H ₂ O(I) Note: ΔH_{neu}° is always exothermic . $DH_{n}^{\Theta} = \frac{-\text{heat change}}{n_{water} \text{ formed}}$			
	Standard Enthalpy Change of Atomisation (ΔH_{atom}^{Θ})	Standard enthalpy change of atomisation of an element is the <u>energy absorbed</u> when <u>one mole</u> of <u>gaseous atoms is formed</u> from the element in its standard state <u>at 298 K and 1 bar</u> . Na (s) \rightarrow Na (g) ΔH_{atom}^{Θ} (Na) = +107 kJ mol ⁻¹			
	Standard Enthalpy Change of Hydration (ΔH_{hyd})	Standard Enthalpy change of hydration is the energy evolved when one mole of gaseous ions is converted to one mole of aqueous ions at infinite dilution at 298 K and 1 bar. $Mg^{2+}(g) + aq \rightarrow Mg^{2+}(aq)$ $\Delta H_{hyd}(Mg^{2+}) = -1926 \text{ kJ mol}^{-1}$			
	Standard Enthalpy Change of Solution (ΔH_{sol})	$F^-(g) + aq \rightarrow F^-(aq)$ $\Delta H_{hyd}(F^-) = -524 \text{ kJ mol}^{-1}$ Standard Enthalpy change of solution is the energy change when one mole of substance (in its standard state) is completely dissolved in infinite dilution in an aqueous solution at 298K and 1 bar.			
	Electron Affinity (EA)	NaCl (s) + aq \rightarrow Na ⁺ (aq) + Cl ⁻ (aq) ΔH_{sol} (NaCl) = +5 kJ mol ⁻¹ First electron affinity is the <u>energy change</u> when <u>one mole of gaseous atoms</u> of an element <u>gain</u> <u>one mole of electrons</u> to form <u>one mole of singly charged negative gaseous ions</u> .			

r	1	
		Second electron affinity is the <u>energy change</u> when <u>one mole of singly charged negative gaseous</u>
		ions of an element gain one mole of electrons to form one mole of doubly charged negative gaseous ions.
		O (g) + $e^- \rightarrow O^-$ (g)1st EA (O) = -141 kJ mol^{-1}O^- (g) + $e^- \rightarrow O^{2-}$ (g)2nd EA (O) = +780 kJ mol^{-1}
		$O(g) + e \rightarrow O^{-}(g)$ $2^{-2} EA(O) = +780 \text{ kJ more}^{+}$
27	Bond Energy (BE)	The <u>energy absorbed</u> when <u>one mole of a given covalent bond</u> in a <u>gaseous compound</u> is broken into <u>gaseous atoms or molecules</u> .
		E.g. Bond energy of O – H: O –H (g) \rightarrow O (g) + H (g)
		Note: BE is always endothermic (bond breaking).
	Entropy, S	Entropy is a measure of the disorder/ disorderliness of a system.
	Gibbs Free Energy	Gibbs Free Energy is a <u>function that relates a reaction's enthalpy and entropy terms to its</u> <u>spontaneity</u> .
		ΔG^{o} : change in standard Gibbs free energy (kJ mol ⁻¹)
		ΔH^{e} : standard enthalpy change of the system (kJ mol ⁻¹)
		$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ e ΔS° : standard entropy change of the system (J mol ⁻¹ K ⁻¹)
		<i>T</i> : temperature of the system (in K)
28	Rate of reaction	The rate of a reaction is defined as the change of amount or concentration of a reactant or product per unit time .
		Final Concentration – Initial Concentration
		Rate of reaction = Time taken for reaction to complete
		Units: mol dm ⁻³ s ⁻¹ or mol dm ⁻³ min ⁻¹ or mol dm ⁻³ h ⁻¹ [mol dm ⁻³ time ⁻¹]
29	rate equation,	Rate equation (or rate law) is the mathematical relationship between the reaction rate and the
	order of reactions	concentration of the individual reactants.

	(m and n), rate constant (<i>k</i>)	$aA + bB \longrightarrow cC$				
		rate =	rate = $k [A]^m [B]^n$			
				Meaning	Units	
			rate	rate of reaction	mol dm ⁻³ time ⁻¹	
			[A] or [B]	concentration of A or B	mol dm ⁻³	
			т	order of reaction with respect to A	no units	
			n	order of reaction with respect to B	no units	
			<i>m</i> + <i>n</i>	overall order of the reaction	no units	
			k	rate constant	Depends on the values of m & n	
		 Rate constant (<i>k</i>) is the <u>proportionality constant</u> for a given reaction at a <u>certain temperature</u>. Order of reaction (with respect to a reactant) is the <u>power</u> to which that reactant's concentration is raised to in an experimentally determined rate equation. Overall order of reaction is the <u>sum</u> of the individual orders of reaction with respect to all the reactants 				
30	reaction mechanism	A reaction mechanism shows the sequence or series of steps in a reaction. These steps are called <u>elementary steps</u> individually.				
31	Homogeneous/ heterogeneous catalyst	 Homogeneous catalysts are catalysts which are in same phases as the <u>reactants</u>. Heterogeneous catalysts are catalysts which are in different phases as the <u>reactants</u>. 				
	Autocatalysis	Autocatalysis is a type of catalysis whereby one of the products (or intermediate) in the reaction catalyses the reaction.				

	Enzymes	Enzymes are proteins which catalyse reactions in living organisms (biochemical reactions). Enzymes are <u>highly specific</u> as each has an <u>active site</u> (specific region of the enzyme) into which only one type of <u>substrate</u> (reactant) can fit .				
32	Dynamic equilibrium	rea	Dynamic equilibrium refers to a reversible process at equilibrium in which the <u>rate of the forward</u> <u>reaction equals to the rate of backward reaction</u> , with the <u>concentrations of reactants and</u> <u>products</u> remaining <u>constant</u> over time.			
33	Le Chatelier's Principle	whi			dynamic equilibrium is subjected to a change Is in such a way to counteract the effect of the	
34	Arrhenius Theory of			Arrhenius Theory	Equation	
	Acids and Bases		Acid	substance that gives out protons (H ⁺) in water	$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$	
			Base	substance that gives out hydroxide (OH⁻) in water	NaOH (aq) \rightarrow Na ⁺ (aq) + OH ⁻ (aq)	
35	Brønsted-Lowry			Brønsted-Lowry Theory	Equation	
	Theory of Acids and	-	Acid	substance which donates protons (H ⁺)	$HCl(aq) + H_2O(l) \longrightarrow Cl^-(aq) + H_3O^+(aq)$	
	Bases		Aciu	to a base (i.e. proton donor)	Water is the base (H ⁺ acceptor).	
			Base	substance that accepts protons (H ⁺)	$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$	
			Dase	from an acid (i.e. proton acceptor)	Water is the acid (H ⁺ donor).	
36	Lewis Acids & Bases			Lewis Theory	Examples	
				substance that accepts an electron pair	$BF_3 + :NH_3 \qquad H_3N \rightarrow BF_3$	
			Acid	from a base to form a dative covalent	Lewis acid Lewis base	
				bond (i.e. an electron-pair acceptor)		

		Basesubstance that donates an electron pair to an acid to form a dative covalent bond (i.e. an electron-pair donor) H^+ Lewis acid $H_2O:$ Lewis base H_3O^+ Lewis base A/Cl_3 Lewis acid $+$ Lewis base Cl^- Lewis base A/Cl_4^-
37	рН	The pH of a solution is defined as the negative logarithm to base ten of the hydrogen ion concentration in mol dm ⁻³ . $pH = - lg [H^+]$ Hence the concentration of H ⁺ can also be found from pH using [H ⁺] = 10 ^{-pH}
38	рОН	The pOH of a solution is defined as the negative logarithm to base ten of the hydroxide ion concentration in mol dm ⁻³ . pOH = - lg [OH-] Hence the concentration of OH ⁻ can also be found from pH using [OH ⁻] = 10 ^{-pOH} Relationship between pH and pOH at 298K (25°C) pH + pOH = 14 Hence pOH = 14 – pH at 25°C.
39	Kw	K_w , ionic product of water, is the equilibrium constant for the self-ionisation of water. $H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$ $K_w = [H^+][OH^-]$ At 25 °C,
		$K_{\rm w} = [H^+][OH^-] = 1.00 \times 10^{-14} \rm{mol}^2 \rm{dm}^{-6}$

43	Constitutional isomers	Constitutional isomers are compounds that have the same molecular formulae but different structural formulae.
44	Stereoisomerism	Stereoisomerism occurs when compounds have the same molecular formula and the same structural formula , but the atoms in the molecules have different spatial arrangements .
45	Cis-trans isomerism	Cis-trans isomerism occurs in compounds where free rotation about a bond is restricted by the presence of multiple bonds, a ring structure or other steric factors (eg. large atoms).
		Two criterion for cis-trans isomerism:
		1. Restricted rotation about C=C double bond (due to presence of of π bond).
		2. The 2 groups bonded to each carbon in the C=C bond must not be identical.
		X = C + X
		where $W \neq Z$, $X \neq Y$
		Maximum no. of cis-trans isomers = 2 ⁿ
		where n is the number of C=C double bonds in molecule that shows cis-trans isomerism
46	Hybridisation	Hybridisation refers to the mixing of atomic orbitals in an atom to generate a set of hybrid orbitals.
47	Electrophile/ Nucleophile	Electrophile is an electron pair acceptor (Lewis acid). It is electron-deficient (or electron-poor) and is attracted to electron-rich region. E.g. AlCl3, HBr
		Nucleophile is an electron pair donor (Lewis base). It is electron-rich and is attracted to an electron-deficient region. E.g. NH ₃ , OH ⁻
48	Free radical	Free radical has an unpaired electron and is electrically neutral. E.g. C/•, NO ₂

49	Homolytic fission	Homolytic fission is the breaking of a covalent bond in such a way that each fragment gets one of the
		shared electrons. Homolytic fission produces two free radicals.
		$A \xrightarrow{\frown} B \longrightarrow A^{\bullet} + B^{\bullet}$
50	Heterolytic fission	Heterolytic fission is the breaking of a covalent bond such that the originally-shared pair of electrons
50		goes to one of the fragments, forming a cation and an anion.
		good to one of the hagmente, forming a batter and an amon.
		+
		$A \xrightarrow{/} B \longrightarrow A^+ + B^-$
51	Chiral centre	A chiral centre is an atom (usually carbon) that has four different substituent groups bonded to it.
52	Optically active	Optically active is the term used to describe the ability of a substance to rotate the plane of
•-		polarization of a beam of light that is passed through it.
55	Enantiomers	Enantiomers are isomers that are non-superimposable mirror images of each other. Enantiomers
55	Enantiomers	have identical chemical properties except in their interactions with another chiral molecule (eg. enzymes
		in biological systems). Enantiomers have identical physical properties except in the direction in which
		they rotate plane-polarised light.
54	Racemic mixture	A racemic mixture (or racemate) is one that has equal amounts of left-handed and right-handed
		enantiomers of a chiral molecule.
		A racemic mixture is optically inactive .
		\circ Although the two enantiomers rotate plane-polarised light in opposite directions, the rotations
		cancel out each other because the enantiomers are present in equal amounts.
		 There is no net rotation of plane-polarised light.
55	Meso compounds	Meso compounds are molecules that have:

		 two or more chiral centres; an internal plane of symmetry. Hence, meso compounds are not chiral compounds (i.e. they are achiral). A meso compounds is superimposable on its mirror image. Meso compounds are optically inactive.
56	Transition element	A transition element is a d-block element which forms one or more stable ions with a <u>partially filled</u> d-subshell .
57	Ligands	Ligands are <u>neutral molecules</u> or <u>anions</u> which contains at least one atom bearing <u>a lone pair of</u> <u>electrons</u> which can be <u>donated</u> into the <u>low-lying vacant orbital</u> of the central atom or ion <u>forming</u> <u>a dative bond</u> .
58	Complex ion	A complex ion the species formed when the number of ligands bonded to the central atom / cation exceeds the normal oxidation number of this atom.

Useful formulas:

For Chemical Energetics

In general, given ΔH_f^{Θ} of the reactants and products,

 $\Delta H_r = \sum m \Delta H_f^{\Theta}$ (Products) – $\sum n \Delta H_f^{\Theta}$ (Reactants)

where m = stoichiometric coefficients of the respective products n = stoichiometric coefficients of the respective reactants

In general, given ΔH_c^{Θ} of the reactants and products,

 $\Delta H_r = \sum n \Delta H_c^{\Theta}$ (Reactants) – $\sum m \Delta H_c^{\Theta}$ (Products)

where m = stoichiometric coefficients of the respective products n = stoichiometric coefficients of the respective reactants

In general, given BE of the reactants and products,

$\Delta H_r = \sum m$ Bond Energy (Reactants) – $\sum n$ Bond Energy (Products)

where m = total numbers of the respective bonds in the reactants n = total numbers of the respective bonds in the products

• For a solution,

 $q = mc\Delta T$

m = mass of **solution** (g)

c = specific heat capacity of solution (J $g^{-1} K^{-1}$)

 ΔT = change in temperature of the solution (K)

Assumptions: 1. density of water/aqueous solution is 1.0 g cm⁻³

2. specific heat capacity of water/ aqueous solution is 4.18 J g⁻¹ K⁻¹ or 4.18 J cm⁻³ K⁻¹

(This means that 4.18 J of heat energy is required to increase the temperature of 1 g or 1 cm^3 water/aqueous solution by 1 °C or 1 K.)

Chemical Eqm

Equilibrium constant K_c

Consider the following reversible reaction in equilibrium.

 $a\mathbf{A} + b\mathbf{B} \Longrightarrow c\mathbf{C} + d\mathbf{D}$

$$K_{c} = \frac{[C]_{eqm}^{c} [D]_{eqm}^{d}}{[A]_{eqm}^{a} [B]_{eqm}^{b}}$$

where [] $_{eqm}$ is the equilibrium concentration in mol dm⁻³

Unit of K_c is (mol dm⁻³)^{c+d-a-b}

K_c is known as the *equilibrium constant* (expressed in terms of concentration).

Reaction Kinetics

Summary of Factors Affecting Rate of Reaction

Change	Effect on rate of reaction	Effect on rate constant, k	Remarks
Increase in concentration	Increases	No change	-
Increase in pressure	Increases	No change	Only applies to gaseous reactants
Increase in temperature	Increases	Increases	$k = Ae^{\frac{E_a}{RT}}$
Use of catalyst	Increases	Increases	