

Revision: Exponential, Logarithmic and Modulus Functions and their Graphs

Key Questions to Answer:

- What is an exponential function?
- What is the range of values for which an exponential function is well-defined
- What laws do exponential functions follow?
- What does the graph of an exponential function look like?
- What are the key characteristics of the graph of an exponential function?
- What is a logarithmic function?
- What is the range of values for which a logarithmic function is well-defined?
- What laws do logarithmic functions follow?
- What does the graph of a logarithmic function look like?
- What are the key characteristics of the graph of a logarithmic function?
- What is the modulus function?
- When do we use the modulus function?
- How do I manipulate the modulus function?
- How can I draw a graph of a modulus function?

§1 Exponential Functions

Definition 1.0.1 (Exponential Function)

A function $y = a^x$, a > 0, $a \ne 1$, is known as an **exponential function**. It is a function used to model a relationship for which a constant increase in the independent variable (here denoted by *x*) gives the same proportional change in the dependent variable (here denoted by *y*).

The most common exponential function is $y = e^x$.

UNDERSTAND What is meant by 'increasing exponentially'?

1.1 Laws of Indices

If $a,b,m,n \in \mathbb{R}$, $a \neq 0, b \neq 0$ (i) $a^m \times a^n = a^{m+n}$ (ii) $a^m \div a^n = a^{m-n}$ (iii) $\left(a^m\right)^n = a^{mn}$ (iv) $a^m \times b^m = (ab)^m$ (v) $\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$ (vi) $\frac{1}{a^n} = a^{-n}$, $a \neq 0$ (vii) $a^0 = 1$, $a \neq 0$ (viii) $\sqrt[n]{a} = a^{1/n}$ (ix) $\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m} = a^{m/n}$ (x) $a^x = a^n \Longrightarrow x = n$, where $a \neq -1, 0, 1$

WONDER Why is that for (x), $a \neq -1, 0, 1$?

Exercise 1

Without the use of a calculator, simplify the following expressions:

(a)
$$9^{\frac{1}{3}} \times 9^{\frac{1}{6}}$$
 (b) $\frac{4^{2-n} \times 2^{n+1}}{\sqrt{2^n}}$
(c) $8^{\frac{1}{2}} \times 2^{0.5}$ (d) $12^3 \div 6^3$

(a) $9^{\frac{1}{3}} \times 9^{\frac{1}{6}} = 9^{\frac{1}{2}} = 3$

(b)

(c)
$$8^{\frac{1}{2}} \times 2^{0.5} = 2^{\frac{3}{2} + \frac{1}{2}} = 2^2 = 4$$

(d)

1.2 Graph of the Exponential Function

Key features of the graph of the exponential function:

Exercise 2

Identify the key features of the graphs of the following exponential functions and sketch them. (Hint: use your graphic calculator)

(a)	$y = 2a^x, a > 1$	(b)	$y = 3^{2x}$
(c)	$y = e^{-x} - 1$	(d)	$y = e^{2x+1} + 1$

WONDER How should the graph of $y = a^x$ look like if 0 < a < 1?

Revision: Exponential, Logarithmic and Modulus Functions and their Graphs

§2 Logarithmic Functions

Definition 2.0.1 (Logarithmic Function)

A function of the form $y = \log_a x$, where $a \in \mathbb{R}$, a > 0, $a \neq 1$ and x > 0.

 $\log_a x$ is read as 'the logarithm of x to base a' or more simply, 'log, base a, x'.

Of special importance will be those with base e, i.e. those of the form $y = \log_e x = \ln x$.

WONDER What are some practical uses for logarithmic functions?

2.1 Laws of Logarithms

If $a, b, c, x, y \in \mathbb{R}^+$ and $r \in \mathbb{R}$,

- (i) $\log_a xy = \log_a x + \log_a y$
- (ii) $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$
- (iii) $\log_a x^r = r \log_a x$

(iv)
$$\log_a b = \frac{\log_c b}{\log_c a}$$

- (v) $\log_a a = 1 \Leftrightarrow a^1 = a$
- (vi) $\log_a 1 = 0 \Leftrightarrow a^0 = 1$

Take note that (i) is *not* equivalent to saying $\log_a(x + y) = \log_a x + \log_a y$,

In fact, $\log_a(x+y) \neq \log_a x + \log_a y$.

Exercise 3

Simplify and express the each of the following as a single logarithm.

(a) $2\log_x 5 - 3\log_x 2 + \log_x 4$ (b) $2\lg(x+2) + \lg(x+1) - \lg(x^2 + 3x + 2)$ (c) $3-2\lg 5$ (d) $3\log_a 2 - 4 + \log_a a^3$

(a)
$$2\log_x 5 - 3\log_x 2 + \log_x 4 = \log_x \left(\frac{25}{8} \times 4\right) = \log_x \left(\frac{25}{2}\right)$$

(b)

(c)
$$3-2\lg 5=3\lg 10-\lg 25=\lg \frac{10^3}{25}=\lg \frac{1000}{25}=\lg 40$$

(d)

2.2 Graph of the Logarithmic Function

Key features of the graph of the logarithmic function:

Axial Intercepts (1,0) Asymptotes x=0For $y = \log_a(bx+c)$, graph does not exist for $bx+c \le 0$

Exercise 4

Identify the key features of the graphs of the following logarithmic functions and sketch them:

(a)
$$y = \ln(2x+1)$$

(b) $y = 2\ln(-x+1)$
(c) $y = \log_2(x+1)$
(d) $y = -\ln(2x+3)+1$

WONDER What do you observe about the graphs in Exercise 4 as compared to that in the graph at the top of the page?

§3 Modulus Functions

Definition 3.0.1 (Modulus Function)

The **absolute value** or **modulus** of a real number *x* is denoted by |x|. Formally,

 $|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0 \end{cases}$

UNDERSTAND

What are some alternative interpretations of the modulus function?

WONDER The modulus function is an example of a piece-wise function. Can you think of any other piece-wise functions?

3.1 **Properties of the Modulus Function**

For all $x, y \in \mathbb{R}$,

- (i) $|x| \ge 0$,
- (ii) |xy| = |x||y|. Hence,

(a)
$$|-x| = |-1||x| = |x|$$

(b)
$$|x^n| = \underbrace{|x \cdot x \cdots x|}_{n \text{ times}} = \underbrace{|x| \cdot |x| \cdots |x|}_{n \text{ times}} = |x|^n$$
 for any positive integer *n*,

(iii) $|x| = |y| \Leftrightarrow x = y \text{ or } x = -y$

(iv) For a general function f(x), $|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$

CHECK Is the following correct? $|f(x)| = \begin{cases} f(x) & \text{if } x \ge 0\\ -f(x) & \text{if } x < 0 \end{cases}$

In general, $|x| = k \Longrightarrow x = k$, or x = -k, where $k \ge 0$, and $|a| = |b| \Longrightarrow a = b$ or a = -b.

EXPLORE How can we apply the definition of the modulus function to solve inequalities involving the modulus function?

Exercise 5

Solve the following equations.

(a) $ x - 0 = 7$ (b) $ x - 3x - 1 = 5$ (c) $ x - 3x + 1 = 7$	(a) <i>x</i> –	-6 =7	(b)	$ x^2 - 5x - 1 = 5$	(c)	$ x^2 - 5x + 1 = -$
---	------------------	-------	-----	----------------------	-----	----------------------

Solution:

(a)	x - 6 = 7	\Rightarrow	x - 6 = 7	or	x - 6 = -7
			<i>x</i> = 13	or	x = -1

(b)

(c)

3.2 Graph of the Modulus Function (y = |f(x)|)

Notice that when $x \ge 0$, the graph of y = |x| is the same as that of y = x, and when x < 0, the graph of y = |x| is the same as that of y = -x, which agrees with the definition of |x|.

In general, for any curve y = f(x),

- (i) the curve y = -f(x) is a reflection of y = f(x) about the *x*-axis.
- (ii) the curve y = |f(x)| is obtained by keeping the part of the graph of y = f(x) that is above the *x*-axis, and reflecting the part of the graph of y = f(x) below the *x*-axis about the *x*-axis.

Exercise 6

Sketch the graph of y = |f(x)| for the following graph of y = f(x).