2(i)	3 blue counters, 1 red counter and y yellow counters.
	S = No. of blue counters + 2(No. of red counters)
	P(S = 3) = P(BBB) + P(RBY in any order)
	$= \frac{3}{y+4} \times \frac{2}{y+3} \times \frac{1}{y+2} + \frac{1}{y+4} \times \frac{3}{y+3} \times \frac{y}{y+2} \times 3!$
	$=\frac{18y+6}{(y+4)(y+3)(y+2)}$ [Shown]
	or $\frac{{}^{3}C_{3}}{{}^{y+4}C_{3}} + \frac{{}^{1}C_{1}{}^{3}C_{1}{}^{y}C_{1}}{{}^{y+4}C_{3}}$
(ii)	$P(S=3) = \frac{7}{20} \Longrightarrow \frac{18y+6}{(y+4)(y+3)(y+2)} = \frac{7}{20}$
	Expand and simplify: $7y^3 + 63y^2 - 178y + 48 = 0$
	Since y is a positive integer, $y = 2$ from GC. Now we have 3 blue, 1 red counter and 2 yellow counters.

Possible values of S are 1(YYB in any order), 2(BBY or RYY in any order), 3 (BBB or RBY in any order) and 4 (BBR in any order) P(S = 1) = P(YYB in any order) $=\frac{2}{6}\times\frac{1}{5}\times\frac{3}{4}\times\frac{3!}{2!}=\frac{3}{20}$ P(S = 2) = P(BBY in any order) + P(RYY in any order) $=\frac{3}{6}\times\frac{2}{5}\times\frac{2}{4}\times\frac{3!}{2!}+\frac{1}{6}\times\frac{2}{5}\times\frac{1}{4}\times\frac{3!}{2!}=\frac{7}{20}$ $P(S = 4) = P(BBR \text{ in any order}) = \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} \times \frac{3!}{2!} = \frac{3}{20}$ The probability of S is 1 2 3 4 S 3 7 7 3 P(S = s) $\frac{1}{20}$ $\frac{1}{20}$ 20 20

Question (i) $P(\text{different colour}) = P(B, W) = \frac{n}{2n+1} \cdot \frac{n+1}{2n} \cdot 2 = \frac{n+1}{2n+1}.$ **Question** (ii) P(same colour) = P(B, B) + P(W, W) $=\frac{n}{2n+1}\cdot\frac{n-1}{2n}+\frac{n+1}{2n+1}\cdot\frac{n}{2n}=\frac{n-1}{2(2n+1)}+\frac{n+1}{2(2n+1)}=\frac{n}{2n+1}$ **Question** (iii) $P(X=1) = \left(\frac{n+1}{2n+1}\right) \left(\frac{1}{2}\right)^2 (2) + \left(\frac{n}{2n+1}\right) \left(\frac{1}{2}\right)^4 \frac{4!}{3!} = \frac{3n+2}{4(2n+1)}$ Alternatively, P(X = 1) = P(B, W, H, T) + P(B, B, H, T, T, T) + P(W, W, H, T, T, T) $= \left[\frac{n+1}{2n+1}\right] \left(\frac{1}{2}\right)^{2} (2) + \left[\frac{n-1}{2(2n+1)}\right] \left(\frac{1}{2}\right)^{4} \frac{4!}{3!} + \left[\frac{n+1}{2(2n+1)}\right] \left(\frac{1}{2}\right)^{4} \frac{4!}{3!} = \frac{3n+2}{4(2n+1)}$ **Question** (iv) If there are 3 blue cards $\Rightarrow n = 3$ $P(B,W) = \frac{n+1}{2n+1} = \frac{4}{7}; P(B,B) = \frac{n-1}{2(2n+1)} = \frac{1}{7}; P(W,W) = \frac{n+1}{2(2n+1)} = \frac{2}{7}$ $P(X=1) = \frac{3n+2}{4(2n+1)} = \frac{11}{28}$ P(X = 4) = P(B, B, H, H, H, H) + P(W, W, H, H, H, H) $=\frac{1}{7}\left(\frac{1}{2}\right)^4+\frac{2}{7}\left(\frac{1}{2}\right)^4=\frac{3}{112}$ P(X = 3) = P(B, B, H, H, H, T) + P(W, W, H, H, H, T) $=\frac{1}{7}\left(\frac{1}{2}\right)^{4}\left(\frac{4!}{3!}\right)+\frac{2}{7}\left(\frac{1}{2}\right)^{4}\left(\frac{4!}{3!}\right)=\frac{3}{28}$ P(X = 0) = P(B, W, T, T) + P(B, B, T, T, T, T) + P(W, W, T, T, T, T) $=\frac{4}{7}\left(\frac{1}{2}\right)^{2}+\frac{1}{7}\left(\frac{1}{2}\right)^{4}+\frac{2}{7}\left(\frac{1}{2}\right)^{4}=\frac{19}{112}$

P(X=2)=1-P(X	= 0) - P(X)	= 1) - P(2)	(X=3) - P(X=4)		
$=1 - \left(\frac{19}{112} + \frac{11}{28} + \frac{3}{28} + \frac{3}{112}\right)$					
$=1-\frac{39}{56}=\frac{17}{56}$					
Alternatively,					
<i>x</i> 0)	1	2	3	4
$P(X=x) = \frac{4}{7} \left(\frac{1}{2}\right)^2$	$+\frac{3}{7}\left(\frac{1}{2}\right)^4\frac{3}{40}$	$\frac{3(3)+2}{(2(3)+1)}$	$\frac{4}{7}\left(\frac{1}{2}\right)^2 + {}^4C_2 \frac{3}{7}\left(\frac{1}{2}\right)^2$	$\left(\frac{1}{2}\right)^{4} C_{1} \frac{3}{7} \left(\frac{1}{2}\right)^{4}$	$\frac{3}{7}\left(\frac{1}{2}\right)^4$
$=\frac{19}{112}$	=	$\frac{11}{28}$	$=\frac{17}{56}$	$=\frac{3}{28}$	$=\frac{3}{112}$
Question 8(v)	- (-				
When $n = 3$, $P(X > 2 X \le 3) = \frac{P(2 < X \le 3)}{P(X \le 3)}$					
	$=\frac{P(2)}{1-P(2)}$	$\frac{(X=3)}{(X=4)}$			
	$=\frac{\frac{3}{28}}{1-\frac{3}{11}}$	3			
	$=\frac{12}{109}$	2			

5(i)	P(X =	$P(X = 3) = \left(\frac{3}{4}\right) \left(\frac{2}{3}\right) \left(\frac{1}{2}\right) = \frac{1}{4}$						
(ii)	X = Num	$X =$ Number of tries John takes to open the door = { 1, 2, 3, 4}						
		x	1	2	3	4		
		$\mathbf{P}(X=x)$	$\frac{1}{4}$	$\frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{4}$		
(iii)	$E(X) = 1 \times \frac{1}{4} + 2 \times \frac{1}{4} + 3 \times \frac{1}{4} + 4 \times \frac{1}{4} = 2.5$							
	E	$E(X^{2}) = 1^{2} \times \frac{1}{4} + 2^{2} \times \frac{1}{4} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{1}{4} = 7.5$						
	$Var(X) = E(X^{2}) - [E(X)]^{2} = 7.5 - (2.5)^{2} = 1.25$							
(iv)	$P(X^2 <$	$< 8) = P(X < \sqrt{8})$	\overline{B} = P(X	=1)+P(X=2)=	$=\frac{1}{4}+\frac{1}{4}=$	$\frac{1}{2}$		

Given $P(X = 1) = 0.04$			
Fo	or $r = 2, 3, 4, 5, 6$, $P(X = r) = \frac{1}{2}$	$\frac{-0.04}{5} = 0.192 .$	
t	Possible Outcomes (x_1, x_2)	Probability $P(T = t)$	
1	(1, 1)	0.04(0.04) = 0.0016	
2	(2, 2), (1, 2), (2, 1)	0.192(0.192) + 2(0.04)(0.192) = 0.052224 [Shown]	
3	(3, 3), (1, 3), (3, 1), (2, 3), (3, 2)	(0.192)(0.192) + 2(0.04)(0.192) + 2(0.192)(0.192) = 0.125952	
4	(4, 4), (1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3)	(0.192)(0.192) + 2(0.04)(0.192) + 4(0.192)(0.192) = 0.19968	
5	(5, 5), (1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4)	(0.192)(0.192) + 2(0.04)(0.192) + 6(0.192)(0.192) = 0.273408	
6	(6, 6), (1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (6, 5), (5, 6)	(0.192)(0.192) + 2(0.04)(0.192) + 8(0.192)(0.192) = 0.347136	
V	$E(T) = \sum_{\text{all } t} t P(T = t) = 4.73248 = E(T^2) = \sum_{\text{all } t} t^2 P(T = t) = 23.871$ $Var(T) = E(T^2) - \left[E(T)\right]^2 = 23$	= 4.73 (3 sf) 04 .87104 - (4.73248) ² = 1.47467305 = 1.47 (3 sf)	
	Given P (Fo 1 2 3 4 5 6 V	Given $P(X = 1) = 0.04$ For $r = 2, 3, 4, 5, 6$, $P(X = r) = \frac{1}{2}$ t Possible Outcomes (x_1, x_2) 1 (1, 1) 2 (2, 2), (1, 2), (2, 1) 3 (3, 3), (1, 3), (3, 1), (2, 3), (3, 2) 4 (4, 4), (1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3) 5 (5, 5), (1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4) 6 (6, 6), (1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (6, 5), (5, 6) $E(T) = \sum_{all t} tP(T = t) = 4.73248 \pm E(T^2) = \sum_{all t} t^2 P(T = t) = 23.871$ $Var(T) = E(T^2) - [E(T)]^2 = 23$	

7	$X = \text{Total score of the two dice} = \{2, 3, 4, 5, 6, 7, 8\}$					
i		X	Possible Outcomes	Probability $P(X = x)$		
		2	(1, 1)	$\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$		
		3	(1, 2), (2, 1)	$\frac{1}{4} \times \frac{1}{4} \times 2 = \frac{2}{16} = \frac{1}{8}$		
		4	(2, 2), (1, 3), (3, 1)	$\frac{1}{4} \times \frac{1}{4} \times 3 = \frac{3}{16}$		
		5	(2, 3), (3, 2), (1, 4), (4, 1)	$\frac{1}{4} \times \frac{1}{4} \times 4 = \frac{4}{16} = \frac{1}{4}$		

		6	(3, 3), (2, 4),	(4, 2)		$\frac{1}{4} \times \frac{1}{4} \times 3 =$	$\frac{3}{16}$		
		7	(3, 4), (4, 3)			$\frac{1}{4} \times \frac{1}{4} \times 2 =$	$\frac{2}{16} = \frac{1}{8}$		
		8	(4, 4)		$\frac{1}{4}$	$\times \frac{1}{4} = \frac{1}{16}$			
	The prol	bability di	istribution of X	is		5		7	0
		$\frac{x}{P(X=x)}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{\frac{3}{16}}{16}$	$\frac{5}{\frac{1}{4}}$	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{1}{16}$
	E(.	$(X) = 2 \times$	$\frac{1}{16} + 3 \times \frac{1}{8} +$	$4 \times \frac{3}{16} + 5 >$	$\times \frac{1}{4} + 6 \times \frac{1}{3}$	$\frac{3}{16} + 7 \times \frac{1}{8} +$	$8 \times \frac{1}{16} = 5$		
ii	Let W =	Gain of I	Harry in the part	icular game.					
		W	36	- 3]				
		$\frac{x}{\mathbf{P}(W=v)}$	$\frac{6}{16}$	$\frac{\neq 6}{13}$					
	In this game, $E(W) = 36 \times \frac{3}{16} - 3 \times \frac{13}{16} = \$ \frac{69}{16}$ or \$4.3125								
8(i)) Th is a	e probal assumed	bility that a sa l to be consta	alesman is nt.	successf	ul in closing	g a deal wi	th each c	ustomer

(ii)	Assumption: Deals closed are independent of one another
	Deals closed may not be independent of one another as customers may collaborate to buy cars as a group for better bargaining power.

(iii)	P(C = 30) = 0.03014
	${}^{60}C_{30} \times p^{30} \times (1-p)^{30} = 0.03014$
	$p^2 - p + 0.2399991029 = 0$
	$\therefore p = 0.6 \text{ or } 0.3999955$
	Since $p < 0.5$,
	p = 0.4 (1 d.p)
9(i)	• Whether a call made by an experienced telesales executive is successful or not is
	 Independent of any other calls. The probability that a call made by an experienced telesales executive is successful
	is a constant at 0.15.
(ii)	Let T be the random variable denoting the number of successful calls, out of 15, made by
	T ~ $B(15, 0.15)$
	P(T > A) - 1 - P(T < A)
	= 0.0617053867
	= 0.0617 (to 3 s f)
(iii)	Method ①: Define a new binomial random variable
	Let D be the random variable denoting the number of days, out of 5, where an
	experienced telesales executive made more than 4 successful calls.
	$D \sim B(5, 0.0617053867)$
	$P(D \le 2) = 0.998$ (to 3 s.f.)
	<u>Method @:</u> Consider cases $\binom{n}{x} p^x (1-p)^{n-x}$
	Required probability
	$= {}^{5}C_{0} \Big[P(T > 4) \Big]^{0} \Big[1 - P(T > 4) \Big]^{5}$
	+ ${}^{5}C_{1}[P(T > 4)]^{1}[1 - P(T > 4)]^{4}$
	+ ${}^{5}C_{2}[P(T > 4)]^{2}[1 - P(T > 4)]^{3}$
	$=(1-0.0617053867)^5$
	$+5(0.0617053867)(1-0.0617053867)^4$
	$+10(0.0617053867)^{2}(1-0.0617053867)^{3}$
	= 0.998 (3 s.f.)
<i>(</i> •)	
(1V)	Let J be the random variable denoting the number of successful calls, out of 9, made by lerry, a novice telesales executive

	$J \sim B(9, 0.09)$
	$P(Tom \& Jerry made 2 sales each) = P(T = 2) \cdot P(J = 2)$
	=(0.2856392285)(0.1506875132)
	= 0.0430 (to 3s.f.)
(v)	P(Tom & Jerry made 3 sales in total Jerry makes at least two sales)
	P(Tom & Jerry made 3 sales in total and Jerry makes at least two sales).
	P(Jerry makes at least two sales)
	$-\frac{\mathbf{P}(J=2)\cdot\mathbf{P}(T=1)+\mathbf{P}(J=3)\cdot\mathbf{P}(T=0)}{2}$
	$P(J \ge 2)$
	$= \frac{\mathbf{P}(J=2) \cdot \mathbf{P}(T=1) + \mathbf{P}(J=3) \cdot \mathbf{P}(T=0)}{\mathbf{P}(T=0)}$
	$- 1 - P(J \le 1)$
	$= \frac{(0.1506875132)(0.2312317564) + (0.0347740415)(0.0873542191)}{(0.0873542191)}$
	1-0.8088343476
	= 0.198 (to 3s.f.)
(vi)	Successful calls made by Tom, a novice telesales executive are independent of successful calls made by Jerry, an experienced telesales executive
	OR
	All successful calls made are independent.

10(a)(i)	Let X denote the no of patients out of 20 who will not recover
	$X \sim B(20, 0.02)$
	$P(X > 2) = 1 - P(X \le 2) = 0.00707$
(ii)	Let \overline{X} denote the mean no. of patients (from the 50 samples) who will not
	recover,
	i.e. $\overline{X} = \frac{X_1 + X_2 + \dots + X_{50}}{50}$
	E(X) = 20(0.02) = 0.4 Var(X) = 20(0.02)(0.98) = 0.392
	$\therefore \overline{X} \sim N(0.4, \frac{0.392}{50})$ by CLT, since <i>n</i> is large
	Hence, $P(\overline{X} > 0.5) = 0.129$
(b)(i)	Let Y denote the no of patients out of 50 who will recover
	$Y \sim B(50, p)$

P(Y > 48) = 0.64
$P(Y \le 48) = 0.36$
From GC, p = 0.97481 = 0.975 (to 3 sig fig)

11(i)	Let <i>X</i> and <i>Y</i> be the number of rectangular tables and round tables that are occupied. $X \sim B(6, 0.8)$ $Y \sim B(9, 0.65)$
	Required probability
	= $P(X = 4) P(Y = 7) = 0.24576 \times 0.21619 = 0.0531$ (3 s.f.)
(ii)	• Customers may arrive as a big group that requires them to be split into two separate tables next to each other. OR
	• The restaurant may choose to seat the customers at tables in a particular section first.

12(i)	The event of Ben losing a game is independent of other games played. OR
	Whether Ben loses a game is independent of other games played.
(ii)	Let <i>X</i> be the r.v. denoting the number of games that Ben loses out of 10 games.
	$X \sim B(10, 0.7)$
	$P(X > 5) = 1 - P(X \le 5) = 0.84973 \approx 0.850$ (3 sig fig)
(iii)	Let <i>Y</i> be the r.v. denoting the number of games that Ben loses out of <i>n</i> games.
	$Y \sim B(n, 0.3)$
	$P(Y > 8) \le 0.01$
	$1 - P(Y \le 8) \le 0.01$
	Using GC,
	When $n = 14$, $P(Y > 8) = 0.00829$ (< 0.01)
	When $n = 15$, $P(Y > 8) = 0.01524$ (> 0.01)
	\therefore the greatest value of <i>n</i> is 14.

13(i)	P(first person that uses Voyager is the third person selected) = $0.92 \times 0.92 \times 0.08 = 0.067712$
(ii)	 Whether a person uses Voyager is independent of another person. The probability that a person uses Voyager is constant for every person in the sample.
(iii)	Let <i>V</i> be the number of people who use Voyager out of <i>n</i> people.

$V \sim B(i)$	n, 0.08)			
$P(V \ge 1)$	(0) > 0.	2		
1 - P(V	≤9)>	0.2		
P(V	≤9)<	0.8		
Using C	ЪС,			
NORMAL Press + F	FLOAT AU 'or atb1	TO REAL	RADIAN	MP
X	Y1			
90	.81786			
91	.80902			
92	.79999			
93	.79078			
94	.7814			
Least v	alue of	n = 92		

	-			
14(i)	The mode of payme	ent made b	y a customer is ind	lependent of other customers.
(ii)	$X \sim B (10, p)$			
	P(X=10) = 0.268			
	$\binom{10}{10}p^{10}\left(1-p\right)^{0}=0$	0.268		
	p = 0.877 (3sf) sh	own		
(iii)	$X \sim B (10, 0.877)$			
	P(X = a) = Highes	st Probabili	ty	
		а	$\mathbf{P}(X=a)$	
	_	8	0.238	
		9	0.377	
		10	0.269	
	Hence most likely	number is 9).	

(ii)	Let <i>Y</i> be the number of games won, out of 100 games played.
	$Y \sim B(100, 0.3)$.
	Required probability
	$= P(Y \ge 40) = 1 - P(Y \le 39) = 0.020988 \approx 0.0210 (3 \text{ s.f.})$

16(a)	Let $Y \sim B(n, p)$
	Given
	np = 1.6(1)
	$(1-p)^n = 0.1296$ (2)
	From (1), $p = \frac{1.6}{n}$, sub into (2)
	$\left(1-\frac{1.6}{n}\right)^n = 0.1296$
	Using GC, $n = 4$ and $p = \frac{1.6}{4} = 0.4$
	$P(Y > 2) = 1 - P(Y \le 2) = 0.1792$
(b)	The probability of a parking lot being occupied is constant throughout the 80 parking lots. Whether a parking lot is occupied is independent of whether any other parking lot is occupied
	1

17(i)	The probability of picking a brown egg from a box is constant.
	The colour of an egg is independent of other eggs.
(ii)	Let <i>X</i> be the r.v. "number of brown eggs in a box of 6 eggs"
	$X \sim \mathbf{B}(6, p)$
	$P(X \ge 5) = 0.04096$
	P(X=5)+P(X=6)=0.04096
	$\binom{6}{5}p^{5}(1-p) + \binom{6}{6}p^{6}(1-p)^{0} = 0.04096$

18(i)	The number of SMSes that John receives in each 30 minute period is independent of the number of SMSes John received in other 30 minute periods. (i.e. independent trials) The probability that John receives at least one SMS in a 30 minute period remains constant for all such periods. (i.e. constant probability of success)
(ii)	The people who contact John will do so at their convenient time, which should not be constant throughout the day.
(iii)	$X \sim B(14, 0.95)$ $P(X \le 10) = 0.00417$

19(i)	Each of the students is equally likely to answer the Differential Equation question
	correctly (i.e. constant p throughout all trials)
	The event of a student answering the Differential Equation question correctly is
	independent of the other students.

(ii)	Let X be the random variable "no of students out of 30 students who could do the Differential Equation question"
	$X \sim B(30, 0.3)$
	$P(X \ge 6) = 1 - P(X \le 5) = 0.92341 \approx 0.923$
(iii)	Let S be the r.v. "no of students out of 8 who could do that question"
	Let T be the r.v "no of students out of 22 who could do that question"
	$S \sim B(8, 0.3)$
	$T \sim B(22, 0.3)$
	P(only 2 among first 8 could do that question $ X \ge 6$)
	$P(S=2)P(T \ge 4)$ a zero
	$=\frac{1}{P(X \ge 6)} = 0.299$
(iv)	Let Y be the r.v. "no of students out of <i>n</i> who could do that question"
	$Y \sim B(n, 0.3)$
	$P(Y \le 5) > 0.9$
	From G.C.
	10 .95265
	12 .88215
	13 .8346 14 .28052
	Therefore the langest results of the 11
	Therefore, the largest possible value of n is 11.
	Since sample size = 50 is large,
	$\overline{X} \sim N(9, \frac{6.3}{50})$ approximately by Central Limit Theorem
	$P(\overline{X} \ge 10) = 0.00242$

20(i)	The event that a call is successfully connected is independent from the event of other calls being successfully connected.
(ii)	Let <i>X</i> be the random variable denoting the number of successful calls, out of a sample
	of 60 calls.
	$X \sim B(60, 0.92)$
	$P(X \ge 50 \mid X \le 55) = \frac{P(50 \le X \le 55)}{P(X \le 55)} = \frac{P(X \le 55) - P(X \le 49)}{P(X \le 55)} = 0.986$
(iii)	$X \sim B(60, 0.92)$
	Since $n = 70$ is large, by Central Limit Theorem,

22(i)	<i>p</i> > 0.6

	$\Rightarrow \frac{2}{65} (40-d) > 0.6$
	$\rightarrow 40 - d > 19.5$
	$\Rightarrow +0^{\circ} u > 15.5$ $\Rightarrow d < 20.5$
	a < 20.5 Maximum distance of d = 20 metres
(ii)	Let W denote the number of kicks that hit the net W = P(15 - n)
	$W \sim B(13, p)$
	$P(W \ge 2) = 0.9$
	$1 - P(W \le 1) = 0.9$
	$P(W \le 1) = 0.1$
	$(1-p)^{15} + 15p(1-p)^{14} = 0.1$
	$(1-p)^{14}(1+14p)-0.1=0$
	Using GC, $p = 0.23557$
	$0.23557 = \frac{2}{65} (40 - x)$
	$\Rightarrow x = 32.343975$
	$\Rightarrow x = 32 metres (nearest metres)$
	Let S be the number of kicks that hit into the net out of 100 kicks at a distance of
	24 metres from the goalpost.
	$S \sim B(100, 0.4923077)$
	$E(S) = 100 \times 0.4923077 = 49.231$
	$Var(S) = 100 \times 0.4923077 \times 0.5076923 = 24.9941$
	Since sample size is large (60 days), by CLT,
	$\overline{S} \sim N(49.231, \frac{24.9941}{60})$
	Required prob = $P(\bar{S} - 50 < 1) = P(49 < \bar{S} < 51) = 0.637(3sf)$

23(i)	$X \sim B(20, 0.15)$
	P(X ≥ 20 × 0.15) = P(X ≥ 3) = 1 – P(X ≤ 2) = 0.595 (3 s.f)

(ii)	P(X >	<i>n</i>) < 0.1	
	1 - P($X \le n) < 0.1$	
	$P(X \leq$	$\leq n$) > 0.9	
	From GC,		
	n	$P(X \le n)$	
	4	0.82985 < 0.9	
	5	0.93269 > 0.9	
	∴ Least in	teger $n = 5$.	

24(i)	Assume that the event of obtaining a rotten cherry is independent of another. Assume that the probability of obtaining a rotten cherry is constant.						
(ii)	Let X be the random variable denoting the number of rotten cherries out of 26. $X \sim B(26,0.08)$ $\boxed{X P(X = x)}$ 1 0.25868 2 0.28117 3 0.19560 The most likely number of rotten cherries is 2						
(iii)	The most likely number of rotten cherries is 2. Let Y be the random variable denoting the number of rotten cherries out of n. $Y \sim B(n, 0.08)$ P(Y=0)+P(Y=1)<0.1 ${}^{n}C_{0}(0.08)^{0}(1-0.08)^{n} + {}^{n}C_{1}(0.08)^{1}(1-0.08)^{n-1} < 0.1$ $(0.92)^{n} + n(0.08)(0.92)^{n-1} < 0.1$ <u>Method O:</u> NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP NY1E(0.92) ^x +X(0.08)(0.92) NY2E0.1						
	Y4= Ymax=.7 Y5= Yscl=1 Y6= AX=.22727272727273 Y7= TraceStep=.45454545454545454545454545454545454545						

$$P(W = w) = P(X = w+1, Y = tail) = \frac{1}{2}P(X = w+1).$$

	For $w =$	2, 3,	4, 5,							
	P(W = v	P(W = w) = P(X = w+1, Y = tail) + P(X = w-1, Y = head)								
		= -	$\frac{1}{2} \Big[P(X) \Big]$	f = w -	-1) + P	(X = w	·+1)]			
	For $w =$	6, 7,								
	P(W = v	v) = P	P(X = w)	<i>y</i> −1, <i>Y</i>	= head	$I)=\frac{1}{2}I$	P(X = v)	<i>v</i> −1).		
	The pro	babili	ty dist	ributio	n of W	is give	en by:			
	W	0	1	2	3	4	5	6	7	
	P(W	1	1	6	7	25	47	13	59	
	= w)	$\overline{10}$	12	35	48	168	280	168	560	
(iii)	Since the mean score of the die is 3.5 and the coin is fair, the expected winnings is									
	\$3.5, hence I would not play this game since amount $pay = \$4 > \$3.5 = expected$									
	winning	gs.								

26(i)	Let <i>X</i> be the amount of winnings Sally gets after one game in dollars.					
	Let the random variables F be the scores on the fair dice.					
	P(X = -5)					
	$= \mathbf{P}(F-Y > 3)$					
	$= \mathbf{P} \big[F = 5, Y = 1 \big]$	$]+\mathrm{P}\big[F=6,Y$	$=1]+\mathrm{P}\big[F=6,$	Y = 2] + P [F =	= 1, Y = 5]	
	$+\mathbf{P}[F=1,Y=6]$	+ P[F = 2, Y =	= 6]			
	$= \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right)$	$\left(\frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{18}\right)$	$+\left(\frac{1}{6}\times\frac{1}{6}\right)+\left(\frac{1}{6}\right)$	$\left(\frac{5}{6}\times\frac{5}{18}\right) + \left(\frac{1}{6}\times\frac{5}{18}\right)$	$\left(\frac{5}{8}\right)$	
	$=\frac{5}{27}$					
	$\mathbf{P}(X=0)$					
	$= \mathbf{P}[F=1,Y=1]$	+ P[F=2,Y=	= 2] + P[F = 3,	Y = 3] + P[F =	4, Y = 4	
	$+ \mathbf{P} \big[F = 5, Y = 5 \big]$]+P[F=6,Y=	=6]			
	$=\frac{1}{6}\left(\frac{1}{6}+\frac{1}{18}+\frac{1}{6}+\frac{1}{6}+\frac{1}{18}+\frac{1}{6}+$	$+\frac{3}{18}+\frac{1}{6}+\frac{5}{18}$				
	$=\frac{1}{6}$					
	P(V-2) - 1 D	$(\mathbf{V} = 0) \mathbf{D}(\mathbf{V} = 0)$	5)			
	1(x-3) = 1 - 1	(X=0) = 1 (X=-1)				
	$= 1 - \frac{1}{27}$	$\frac{1}{7} - \frac{1}{6} = \frac{1}{54}$				
	<i>x</i>	-5	0	3		
	$\mathbf{P}(X=x)$	$\frac{5}{27}$	$\frac{1}{6}$	$\frac{35}{54}$		
	$E(X) = \sum x P(X = x) = -5 \left(\frac{5}{27}\right) + 0 \left(\frac{1}{5}\right) + (3) \left(\frac{35}{54}\right) = \frac{55}{54}$					
	$\frac{1}{\operatorname{all} x} \qquad (27) (6) (54) 54$					
(ii)	$E(X^{2}) = \sum_{all \ x} x^{2} P(X = x) = \left(-5\right)^{2} \left(\frac{5}{27}\right) + \left(0\right)^{2} \left(\frac{1}{6}\right) + \left(3\right)^{2} \left(\frac{35}{54}\right) = \frac{565}{54}$					
	$565 (55)^2 27485$					
	$\operatorname{Var}(X) = \operatorname{E}(X^2)$	$-[\mathrm{E}(X)] = \frac{1}{5}$	$\overline{4}^{-}\left(\overline{54}\right) = \overline{2}$	2916		
	Since the numbe	r of games of	50 is sufficient	ly large, by Ce	entral Limit Theorem,	

$$X_{1} + X_{2} + \dots + X_{50} \sim N\left(50\left(\frac{55}{54}\right), 50\left(\frac{27485}{2916}\right)\right) \text{ approximately}$$
$$P(X_{1} + X_{2} + \dots + X_{50} \ge 65)$$
$$= 0.25839 = 0.258 \text{ (to 3 sf)}$$

27 (i) Let W denote the number of shots that hits the bullseye 40m away from the target out of 18 shots.

$$W \sim B(18, \frac{2}{195}(95-40))$$

$$W \sim B(18, \frac{22}{39})$$

$$P(W > 6|W \le 10) = \frac{P([W > 6] \cap [W \le 10])}{P(W \le 10)}$$

$$= \frac{P(7 \le W \le 10)}{P(W \le 10)}$$

$$= \frac{P(W \le 10) - P(W \le 6)}{P(W \le 10)}$$

$$= 0.926 \text{ (to 3 s.f.)}$$
(ii) Let Y denote the number of shots that hits the bullseye x m away from the target out of 18 shots.

$$Y \sim B(18, \frac{2}{195}(95-x))$$

$$Y \sim B(18, \frac{190}{195} - \frac{2}{195}x)$$

$$P(Y \ge 2) = 0.98$$

$$1 - P(Y = 0) - P(Y = 1) = 0.92$$

$$\left[1 - \left(\frac{190}{195} - \frac{2}{195}x\right)\right]^{18} + \left\{1^{18}C_1 \times \left(\frac{190}{195} - \frac{2}{195}x\right)^1 \times \left[1 - \left(\frac{190}{195} - \frac{2}{195}x\right)^{17}\right] = 0.02$$

$$\left(\frac{1}{39} + \frac{2}{195}x\right)^{18} + \left[1^{18}C_1 \times \left(\frac{190}{195} - \frac{2}{195}x\right)^1 \times \left(\frac{1}{39} + \frac{2}{195}x\right)^{17}\right] = 0.02$$
Using the GC,

$$x = 67.3 \text{ m}$$
(to 3 s.f.)

28(i)	$\overline{x} = 2$
(ii)	The probability that a frog carries the genetic trait is constant for all frogs in a box .
(iii)	$X \sim B\left(6, \frac{1}{3}\right)$ $P(X = 2) = 0.32922$ Let <i>Y</i> be the number of boxes that contain exactly 2 frogs with the genetic trait. $Y \sim B(10, 0.32922)$ $P(Y > 3) = 1 - P(Y \le 2) = 0.691$

29	Let <i>X</i> be the number of packets with a toy, in a carton of 12.				
(a)(i)	$X \sim B\left(12, \frac{2}{7}\right)$				
	$P(X < 2) = P(X \le 1) = 0.10230 = 0.102 (3s.f)$				
(ii)	$P(1 < X \le 6) = P(X \le 6) - P(X \le 1) = 0.868$				
(b)	Required probability				
	$= (P(X = 4))^{2} \times (P(X = 2))^{3} \times \frac{5!}{2!3!} = 0.00323 (3s.f.)$				
(c)	Let Y be the number of cartons out of 40 cartons that contains less than 2 toys.				
	$Y \sim B(40, 0.1023)$				
	P(Y=0) = 0.0133				
	Alternative method				
	Required probability = $(1 - 0.10230)^{40} = 0.0133$				
	P(A = 2 or 3) = 0.25				
	$\binom{25}{2}p^{2}(1-p)^{23} + \binom{25}{3}p^{3}(1-p)^{22} = 0.25$				
	$300 p^2 (1-p)^{23} + 2300 p^3 (1-p)^{22} = 0.25$				
	From GC, $p = 0.186$ or $p = 0.0403$ (reject since $p > 0.1$)				

Hence, $P(X_1 + X_2 + \dots + X_{50} > 110) = P(\overline{X} > 2.2) = 0.11034 \approx 0.110$ Alternative solution: By Central Limit Theorem, since *n*=50 is large $\Rightarrow 50\overline{X} = X_1 + X_2 + \dots + X_{50} \sim N\left(100, \frac{200}{3}\right)$ approximately Hence, $P(X_1 + X_2 + \dots + X_{50} > 110)$ $= 0.11034 \approx 0.110$

31. Solution

(i)

The number of customers who do not turn up for the 9 am ferry, on a randomly chosen day, is denoted by *X*.

$$X \sim B\left(113, \frac{p}{100}\right)$$

P(X \le 1) = 0.012
P(X = 0) + P(X = 1) = 0.012
 $\left(1 - \frac{p}{100}\right)^{113} + 113\left(\frac{p}{100}\right)\left(1 - \frac{p}{100}\right)^{112} = 0.012$

Using GC, p = 5.554 (3 decimal place)

(ii) Let *Y* be the random variable that denotes the number of customers who purchased a ticket and turn up for the 9 am ferry.

$$Y \sim B(113, 0.94)$$
$$P(Y \ge 108 | Y \le 108)$$
$$= \frac{P(Y = 108)}{P(Y \le 108)}$$
$$= \frac{0.136717}{0.814523}$$
$$= 0.168$$

(iii) Let *W* be the random variable that denotes the number of days out of 7 days where every customer who turns up get a seat on the 9 am ferry.

$$W \sim B(7, 0.814523)$$

$$P(W \ge 5) = 1 - P(W \le 4) = 0.876$$

(iv) Let T denote the number of customers who purchased a ticket and turn up for the 9am ferry out of n passengers.

 $T \sim B(n, 0.94)$ $P(T > 108) \le 0.01$ $P(T \le 108) \ge 0.99$ Using GC, When n = 109, $P(T \le 108) = 0.99882 > 0.99$ When n = 110, $P(T \le 108) = 0.99112 > 0.99$ When n = 111, $P(T \le 108) = 0.96571 < 0.99$ maximum n = 110 awarded only if method is clearly shown

(v) Since n = 40 is large, by Central Limit Theorem, $\overline{Y} \sim N(106.22, 0.15933)$ approximately. $P(\overline{Y} \le 106) = 0.291$

$P(X = 0) = \frac{1}{2} + \left(\frac{1}{3}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{3}\right)^{2}\left(\frac{1}{2}\right) + \left(\frac{1}{3}\right)^{3}\left(\frac{1}{2}\right) + \dots$					
1					
$\overline{2}$					
$=\frac{1}{1}$					
$1 - \frac{1}{3}$					
3					
$=\frac{1}{4}$ (shown)					
P(X = 1 did not lose) = P(first roll is '6')					
$P(X = 1 \text{did not lose}) = \frac{P(\text{did not lose})}{P(\text{did not lose})}$					
1					
6					
$=\frac{3}{1}$					
$1 - \frac{1}{4}$					
2					
$=\frac{1}{3}$					
X is the number of tosses that it takes for the player to toss the first '6' and is 0 if the player loses the game					
in, is the number of tosses that it allos for the player to toss the first of, and is on the player tosses the game					
x 0 1 2 3					
P(X = x) 3 1 (2)1 (2) ² 1					
$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 & -1 \end{bmatrix}$					
P(X = 1) = P(6 on first toss)					
P(X = 2) = P(2 or 4 on first toss, 6 on second toss)					
P(X = 3) = P(2 or 4 on first and second toss, 6 on third toss)					

$$E(X) = 0 + 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{3}\right)\left(\frac{1}{6}\right) + 3\left(\frac{1}{3}\right)^{2}\left(\frac{1}{6}\right) + \dots$$

$$= \sum_{x=1}^{\infty} \left[x\left(\frac{1}{3}\right)^{x-1} \frac{1}{6}\right]$$

$$= \frac{1}{6} \sum_{x=1}^{\infty} x\left(\frac{1}{3}\right)^{x-1}$$

$$E(X) = \frac{1}{6} \times \frac{1}{\left(1 - \frac{1}{3}\right)^{2}} = \frac{3}{8}$$

$$E(X^{2}) = 0 + 1^{2}\left(\frac{1}{6}\right) + 2^{2}\left(\frac{1}{3}\right)\left(\frac{1}{6}\right) + 3^{2}\left(\frac{1}{3}\right)^{2}\left(\frac{1}{6}\right) + \dots$$

$$= \sum_{x=1}^{\infty} \left[x^{2}\left(\frac{1}{3}\right)^{x-1} \frac{1}{6}\right]$$

$$= \frac{1}{6} \times \frac{1 + \frac{1}{3}}{\left(1 - \frac{1}{3}\right)^{3}} = \frac{3}{4}$$

$$Var(X) = E(X^{2}) - (E(X))^{2} = \frac{3}{4} - \left(\frac{3}{8}\right)^{2} = \frac{39}{64}$$

33.	Suggested solution					
(i)	Each mask has the same probability of being faulty of 0.06.					
	The event that a mask is faulty is independent of any other mask.					
(ii)	Let X be the number of faulty masks in a box of 25.					
	$X \sim B(25, 0.06)$					
	Probability = $P(X \ge 3)$					
	$=1-P(X \le 2) = 0.18711 (5 \text{ s.f.}) = 0.187 (3 \text{ s.f.})$					
(iii)	Probability					
	$= \mathbf{P}(X \le 5 \mid X \ge 3)$					
	$-\frac{P(X \le 5 \ \cap \ X \ge 3)}{P(3 \le X \le 5)} - \frac{P(3 \le X \le 5)}{P(3 \le X \le 5)}$					
	$P(X \ge 3) \qquad P(X \ge 3)$					
	$-\frac{P(X \le 5) - P(X \le 2)}{0.99694 - 0.81289}$					
	$P(X \ge 3)$ 0.18711					
	= 0.98359 (5 s.f.) = 0.984 (3 s.f.)					
(iv)	Let <i>Y</i> be the number of boxes out of 100 which have at least 3 faulty masks.					
	$Y \sim B(100, 0.18711)$					
	Probability					
	$= \mathbf{P}(Y \le 20)$					
	= 0.68423 (5 s.f.) $= 0.684$ (3 s.f.)					

(v)	$F \sim \mathbf{B}(n, 0.1)$						
	Given that mode is 4 (i.e. $P(F = 4)$ has the highest probability)						
	P(F = 3) < P(F = 4) and	P(F = 4) > P(F = 5)					
	$\binom{n}{3}(0.1)^3(0.9)^{n-3} < \binom{n}{4}(0.1)^4(0.9)^{n-4}$	$\binom{n}{4}(0.1)^4(0.9)^{n-4} > \binom{n}{5}(0.1)^5(0.9)^{n-5}$					
	$\frac{n!}{3!(n-3)!}(0.1)^3(0.9)^{n-3} < \frac{n!}{4!(n-4)!}(0.1)^4(0.9)^{n-4}$	$\frac{n!}{4!(n-4)!}(0.1)^4(0.9)^{n-4} > \frac{n!}{5!(n-5)!}(0.1)^5(0.9)^{n-5}$					
	$\frac{4!}{3!} \frac{(0.9)^{n-3}}{(0.9)^{n-4}} < \frac{(n-3)!}{(n-4)!} \frac{(0.1)^4}{(0.1)^3}$	$\frac{5!}{4!} \frac{(0.9)^{n-4}}{(0.9)^{n-5}} < \frac{(n-4)!}{(n-5)!} \frac{(0.1)^5}{(0.1)^4}$					
	4(0.9) < (n-3)(0.1)	5(0.9) > (n-4)(0.1)					
	<i>n</i> > 39	<i>n</i> < 49					
	.:.39<	<i>n</i> < 49					
	Since <i>n</i> is an integer, $\Rightarrow n = 40, 41, 42, 43, 44, 45, 46, 47$ or 48						

Qn	Suggested Solution	
34(a)	$\sum_{r=1}^{\infty} \mathbf{P}(X=r) = 1$	
	$\sum_{r=1}^{\infty} \frac{a}{r^3} = 1$	
	$a = \frac{1}{1.2021} = 0.83188 = 0.832 $ (3 st	
(b)	E(X) = $\sum_{r=1}^{\infty} r P(X = r) = a \sum_{r=1}^{\infty} \frac{1}{r^2} = 1$.37 (3 s.f)
	$E(X^{2}) = \sum_{r=1}^{\infty} r^{2} P(X = r) = a \sum_{r=1}^{\infty} \frac{1}{r} dr$	oes not exist.
	Therefore Var(<i>X</i>) cannot be calculated	ited.
(c)	Method 1	Method 2
	$P(X \ge 2 \mid X \le 15)$	$P(X \ge 2 \mid X \le 15)$
	$=1-P(X=1 X\leq 15)$	$P(2 \le X \le 15)$
	P(X=1)	$=$ $P(X \le 15)$
	$=1-\frac{1}{P(X \le 15)}$	$\sum_{n=1}^{15} \frac{a}{3}$
	$=1-\frac{a}{\sum_{r=1}^{15}\frac{a}{r^{3}}}$	$=\frac{\frac{1}{r=2}r}{\sum_{r=1}^{15}\frac{a}{r^{3}}}$
	= 0.16665 = 0.167 (3 s.f)	= 0.16665 = 0.167 (3 s.f)
(d)	$Y \sim B(10, P(X = 3))$ where $P(X =$	$3) = \frac{a}{27} = \frac{0.83188}{27} = 0.030810$
	$P(Y > 2) = 1 - P(Y \le 2) = 0.00298$	

(a) (ii) Let *C* be the random variable the number of customers out of 40 customers who uses e-payment at a hawker stall. (ii) $C \sim B(40, 0.25)$ $P(C \le 10) = 0.583904$ Let *A* be the random variable the number of customers out of 40 customers who uses e-payment at a hawker stall. $A \sim B(30, 0.583904)$

= 0.00824 (3.s.f)

	$P(A \ge 15) = 1 - P(A \le 14)$
	=1-0.1322406
	= 0.867759
	= 0.868 (3s.f)
(b) (i)	A random sample in this context means that each hawker has an <u>equal chance of being selected</u> for the sample and the <u>selection</u> of one hawker is <u>independent of any other hawkers</u> .
(b)	$X \sim B(n, p)$
(II)	Since $E(X) = 3.96$,
	$\therefore np = 3.96$ (1)
	Since $P(X \le 1) = 0.05303$,
	P(X = 0) + P(X = 1) = 0.05303
	${}^{n}C_{0}p^{0}(1-p)^{n} + {}^{n}C_{1}p^{1}(1-p)^{n-1} = 0.05303$
	$(1-p)^{n} + np(1-p)^{n-1} = 0.05303$ (2)
	Sub. (1) into (2):
	$(1-p)^{3.96/p} + (3.96)(1-p)^{3.96/p^{-1}} = 0.05303$
	Using GC, p = 0.3600375 = 0.360 (3s.f)
	: $n = \frac{3.96}{0.3600375} = 11$ (nearest integer)
(b)	$X \sim B(15, p)$
(Ш)	Since mode = 5 \Rightarrow P(X = 4) < P(X = 5) and P(X = 5) > P(X = 6)
	Considering $P(X = 4) < P(X = 5)$,
	${}^{15}C_4p^4(1-p)^{11} < {}^{15}C_5p^5(1-p)^{10}$
	$(1365)(p^4)(1-p)^{11} < (3003)(p^5)(1-p)^{10}$
	$(p^{4})(1-p)^{10}[1365(1-p)-3003p] < 0$
	Since $(1-p) > 0$ and $p > 0$,
	1365(1-p) - 3003p < 0
	1 - p - 2.2p < 0
	5
	$p > \frac{16}{16}$
	Considering $P(X = 5) > P(X = 6)$,
	${}^{15}C_5 p^5 (1-p)^{10} > {}^{15}C_6 p^6 (1-p)^9$
	$(3003)(p^5)(1-p)^{10} > (5005)(p^6)(1-p)^9$
	$(p^{5})(1-p)^{9}[3003(1-p)-5005p] > 0$

Since (1-p) > 0 and p > 0, 3003(1-p) - 5005p > 0 $1-p - \frac{5}{3}p > 0$ $p < \frac{3}{8}$ Combining both results, $\therefore \frac{5}{16}$