Lesson 20

Object Oriented Programming (OOP) :
Object . Creating a Class

OBJECTS

* Python supports many different kinds of data

1234 3.14159 "Hello" LYy 5y ¥y Llyg 13

{"CA": "California"™, "MA"™: "Massachusetts™}

" each is an object, and every object has:
* atype
* an internal data representation (primitive or composite)
* a set of procedures for interaction with the object

" an object is an instance of a type
* 1234 isaninstance ofan int
* "hello" isan instance of a string

OBJECT ORIENTED
PROGRAMMING (OOP)

= EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

" can create new objects of some type

= can manipulate objects

" can destroy objects
* explicitly using del or just “forget” about them

* python system will reclaim destroyed or inaccessible
objects — called “garbage collection”

WHAT ARE OBJECTS?

" objects are a data abstraction
that captures...

(1) an internal representation
* through data attributes

(2) an interface for
interacting with object
* through methods
(aka procedures/functions)

* defines behaviors but
hides implementation

EXAMPLE:
[1,2,3,4] has type list

= how are lists represented internally? linked list of cells

1. = HES—ERER - EIEE -

= how to manipulate lists? Mg, 0
« Lla) Dlac3ls #F
* len(), min(), max(), del(L[1])
* L.append(),L.extend(),L.count (), L.1index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort ()
" internal representation should be private

= correct behavior may be compromised if you manipulate
internal representation directly

ADVANTAGES OF OOP

" bundle data into packages together with procedures
that work on them through well-defined interfaces

* divide-and-conquer development
* implement and test behavior of each class separately

* increased modularity reduces complexity

= classes make it easy to reuse code
* many Python modules define new classes

* each class has a separate environment (no collision on
function names)

* inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

* make a distinction between creating a class and
using an instance of the class

= creating the class involves
* defining the class name
* defining class attributes
* for example, someone wrote code to implement a list class

= using the class involves
* creating new instances of objects
* doing operations on the instances
* forexample, L=[1,2] and 1en (L)

DEFINE YOUR OWN TYPES

* use the class keyword to define a new type
\’0\96 A%

03"(\6

class|[Coordinate|(lobject) :

. (\'\{\O(\

\ #define attributes here

66
\25° —_— . — .
- = similar to def, indent code to indicate which statements are

part of the class definition

* the word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)

* Coordinate is asubclass of object
* object is asuperclass of Coordinate

WHAT ARE ATTRIBUTES?

* data and procedures that “belong” to the class

= data attributes
* think of data as other objects that make up the class
* for example, a coordinate is made up of two numbers

* methods (procedural attributes)
* think of methods as functions that only work with this class
* how to interact with the object

* for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS

= first have to define how to create an instance of
object

" use a special method called init to

initialize some data attributes e®

X\ ec\.
: . A \O))
class Coordinate(object): & x°
\N\(\ {,C‘}}
def| init [elf],|x, y)|: ¢o° -
xO N xe
O Lo
AV (c° self |x|[= x \ A ™ e
(’Q(ea‘e 300\0\6 self.ly|= vy - (0 0‘6\60‘ <5 N
SR OV e A%’
ol e(c-" X2 > 6’& i
\)(\6 WO - (;OdC

ACTUALLY CREATING AN
INSTANCE OF A CLASS

. oCL
\NO‘O\Q
c =| Coordinate (3,4) o
22’ 20
origin = Coordinate (0,0) C‘O&‘\\Qe&ﬁa du\o
. < Q
print (c.x) XO e 0 \(\33 -
o ot ! (-\\0\)‘ \3365 N>
print (origin.x) 0‘96‘“55’”6& - e —
e C

variables

* don’t provide argument for self, Python does this
automatically

WHAT ISAMETHOD?

= procedural attribute, like a function that works only
with this class

* Python always passes the object as the first argument

* convention is to use self as the name of the first
argument of all methods

" the “.” operator is used to access any attribute
* a data attribute of an object

* a method of an object

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate (object):
e A
L G X0©
def init (self, x, y): o ®®
N _— ‘0’6 ‘e(‘— 3&6
self.x = x (éd 20 O
X © ngﬁ 2°
self.y =y ws© S _&qp
3(\ 0‘3‘\
def distance (self| |other) : aot
x diff sqg = (self|. xrother.x) **2
y diff sq = (self.y-other.y)**2

return (x diff sq + y diff sqg)**0.5

* other than self and dot notation, methods behave just
like functions (take params, do operations, return)

HOW TO USE A METHOD

def distance(self,
code here

other) :

Using the class:
= conventional way
c = Coordinate(3,4)

zero = Coordinate (0, 0)

print (.

distancek

" equivalent to

C:

Z2ero =

Coordinate (3,

4)

Coordinate (0, 0)

print4Coordinate.distance(c, zerol))
\
< < 05
0 0 Q
N "y 0 e®
A\° et e QN@@ co>
Qﬁ?cﬁ“ﬁ;d&wg
0\0\6 Q(Gs
2

PRINT REPRESENTATION OF
AN OBJECT

>>> ¢ = Coordinate(3,4)
=>2> prant (e}
< maln_.Coordinate object at 0x7fa918510488>

* uninformative print representation by default

" definea str method for a class

* Python callsthe str = method when used with
print on your class object

= you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (e)
<3 d>

DEFINING YOUR OWN PRINT
METRHOD

class Coordinate (object) :

def” anae (selfy & ¥):
self.x = x

self.y = vy

def distance(self, other):
X diffisq = {(selfl . x-oilier . X}j=&2
YV diff sqg = [(self.y-other.y)tt2

Fetarn: Ridaft s ¥y daff Sq)y**a.s5
def str (self):

return < tstritself . xX)F " s rtserisel .y ET T

e&

) 2
0% 00 ot

X© o 0%
N\ (\©

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

= can ask for the type of an object instance &8~
>>> ¢ = Coordinate (3, 4) (§«@'/
>>> print (c) (@&“kp ‘Cﬁa
<3, 4> PO &&ﬁ*
>>> print (type(c)) ,Npeo(d\(\’b‘e
<class main .Coordinate> | ¥ ;56000 :

= this makes sense since - e-\se"\a o ot
>>> print (Coordinate) d&ﬁﬁ .\a“w
<class main .Coordinate> 2P ‘géﬂﬁ
>>> print (type (Coordinate)) &&@a
<type 'type'> 2C°

"use isinstance () tocheckifan objectisaCoordinate

>>> print(isinstance(c, Coordinate))
True

SPECIAL OPERATORS

"+, -, ==, <,>, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

" like print, can override these to work with your class

* define them with double underscores before/after

~_add (self, other) = self + other
~_sub_ (self, other) = self - other
__eq_ (self, other) > self == other
1t (self, other) -2 self < other
__len (self) =2 len (self)

str (self) - print self

... and others

EXAMPLE: FRACTIONS

" create a new type to represent a number as a fraction

" internal representation is two integers
* numerator
* denominator

" interface a.k.a. methods a.k.a how to interact with
Fraction objects
* add, subtract

* print representation, convert to a float
* invert the fraction

= the code for this is in the handout, check it out!

Live Demo

Creating a Class

class Coordinate (object) :
def 1nit (self,x,y):
self.x = X
self.y = vy
def str (self):
return '"<'+str(self.x)+', "+str(self.y)+'>"
def distance (self, other):
diff x sqg = (self.x - other.x)**2
diff y sq = (self.y - other.y)**2
return (diff x sq + diff y sq)**(0.5)

class Fraction (object) :
def 1nit (self,num,denom) :
self.num = num
self.denom = denom
def str (self):
return str(self.num)+'/"+str(self.denom)
def add (self,other):
top = self.num*other.denom + other.num*self.denom
bottom = self.denom*other.denom
return Fraction (top,bottom)
def sub (self,other):

Egp = self.num*other.denom - other.num*self.denom
bottom = self.denom*other.denom
return Fraction (top,bottom)

def float (self):

return self.num/self.denom

THE POWER OF OOP

* bundle together objects that share
* common attributes and

* procedures that operate on those attributes

= use abstraction to make a distinction between how to
implement an object vs how to use the object

* build layers of object abstractions that inherit
behaviors from other classes of objects

= create our own classes of objects on top of Python’s
basic classes

