2023 H2 Math Prelim solutions

Qn	Suggested Solution	
2a(i)	(A) c = 5	
	The sequence initially decreases and subsequently alternates ,	
	$\frac{\text{And converges to 2.}}{\text{NORHAL FLOAT AUTO REAL RADIAN MP}}$ $\frac{10}{10}$ $\frac{1.9941}{11}$ $\frac{1.9941}{12}$ $\frac{1.9945}{13}$ $\frac{1.9995}{15}$ $\frac{1.9996}{15}$ $\frac{1.9999}{15}$ $\frac{1.9999}{17}$	
	It is a constant with a value of 2. NORMAL FLOAT AUTO REAL RADIAN MP PRESS + FOR Δ Tb1 n u 1 2 2 2 3 2 4 2 5 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 n=1	
a(ii)	u = c	
a(11)	$u_1 - c$ $u_1 - 3 = 0.5u_1 - 3 = 0.5c$	
	$u_2 = 5 - 0.5u_1 = 5 - 0.5c$	
	$u_3 = 3 - 0.5u_2 = 3 - 0.5(3 - 0.5c) = 1.5 + 0.25c$	
	Given $2u_3 = -5u_2$	
	2(1.5+0.25c) = -5(3-0.5c)	
	3 + 0.5c = -15 + 2.5c	
	2c = 18	
	<i>c</i> = 9	
b(i)	Given $v_3 + 1 = 2u_2 - u_1$,	
	$2v_1 + v_2 - 1 + 1 = 2u_2 - u_1,$	
	2p + 2 = 2(3 - 0.5c) - c	
	2p + 2 = 6 - 2c	
	c + p = 2	
b(ii)	Given $v_1 = p, v_2 = 2$,	
	$v_3 = 2v_1 + v_2 - 1 = 2p + 2 - 1 = 2p + 1$	
	$v_4 = 2v_2 + v_3 - 1 = 2(2) + (2p+1) - 1 = 2p + 4$	
	$v_5 = 2v_3 + v_4 - 1 = 2(2p+1) + (2p+4) - 1 = 6p+5$	
	$\therefore 6p + 5 = 77$	
	$\therefore p = 12$	

Qn Suggested Solution

3(a)	$(\mathbf{r})^2$		
	$y^2 = h^2 + \left \frac{x}{2} \right $	x + 2y = 20	
	(2)	r = 20 2 m	
	$=h^2 + \left(\frac{20-2y}{2}\right)^2$	x - 20 - 2y	
	$= h^2 + (100 - 20y + y^2)$		
	$20y = 100 + h^2$		
	$y = 5 + \frac{h^2}{20} \text{(shown)}$		
	x = 20 - 2y		
	$=20-2\left(5+\frac{h^2}{20}\right)$		
	$=10-\frac{h^2}{10}$		
	10		
(b)	Volume of prism.		
(~)	$V = \frac{1}{hxz}$		
	2		
	$=\frac{1}{2}h\left(10-\frac{h^2}{10}\right)(20-2h)$		
	$=\frac{h}{10}(100-h^2)(10-h)$		
	$=\frac{h}{10}(1000-100h-10h^2+h^3)$		
	$=\frac{1}{10}\left(h^4 - 10h^3 - 100h^2 + 1000h\right) \text{ (sh}$	own)	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{10} \left(4h^3 - 30h^2 - 200h + 1000 \right)$		
	For max volume		
	$\frac{dV}{dt} = 0 \Longrightarrow 4h^3 - 30h^2 - 200h + 1000 = 0$		
	dh From $GC: h = 6.40$ or 10 (reject :: ((-k - 10)	
	h = 3.9039	$(\langle n \langle 10 \rangle)$	
	$\frac{d^2V}{d^2} = \frac{1}{(12h^2 - 60h - 200)}$		
	$dh^2 = 10^{(12h)} - 50h = 200)$ When $h = 3.9039$.		
	d^2V 1		
	$\left \frac{dr}{dh^2} = \frac{1}{10} \left(12 \left(3.9039\right)^2 - 60 \left(3.9039\right) - 2\right)\right)$	200) = -25.1 < 0	
	$\therefore h = 3.9039$ gives maximum volume		

	Max volume	
	$=\frac{1}{10} \Big(3.9039^4 - 10 \big(3.9039 \big)^3 - 100 \big(3.9039 \big)^2 + 1000 \big(3.9039 \big) \Big)$	
	$= 201.71 = 202 \text{ cm}^3$ (3 sf)	

Qn	Suggested Solution	
4(a)	Since the lines <i>AB</i> and <i>AC</i> meet, $\begin{pmatrix} 1+2\lambda \\ 4+a\lambda \\ 6+\lambda \end{pmatrix} = \begin{pmatrix} 4+\mu \\ 4+b\mu \\ 9+2\mu \end{pmatrix}.$	
	$2\lambda - \mu = 3 (1) a\lambda = b\mu (2) \lambda - 2\mu = 3 (3)$	
	Solving (1) & (3) gives $\lambda = 1$ & $\mu = -1$ Hence (2) gives $a = -b \implies a+b=0$ (shown)	
(b)	$ \begin{pmatrix} 2\\a\\1 \end{pmatrix} \times \begin{pmatrix} 1\\b\\2 \end{pmatrix} = \begin{pmatrix} 2a-b\\-3\\2b-a \end{pmatrix} $	
	Since the normal of plane <i>ABC</i> is parallel to $\begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix}$,	
	2a - b = 9 (1) 2b - a = -9 (2)	
	Solving (1) & (2) gives $a = 3 \& b = -3$	
	Equation of plane ABC:	
	$\mathbf{r} \cdot \begin{pmatrix} -3\\1\\3 \end{pmatrix} = \begin{pmatrix} 1\\4\\6 \end{pmatrix} \cdot \begin{pmatrix} -3\\1\\3 \end{pmatrix} = 19 \implies -3x + y + 3z = 19$	
(c)	Since $\lambda = 1$ & $\mu = -1$ and $a = 3$ & $b = -3$, the coordinates of A are $(3, 7, 7)$.	
	Let the acute angle between lines AB and AC be A	
	$\cos \theta = \frac{\begin{vmatrix} 2 \\ 3 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -3 \\ 2 \end{vmatrix}}{\sqrt{4+9+1}\sqrt{1+9+4}} = \frac{5}{14}$ $\Rightarrow \theta = 69.1^{\circ} \text{ or } 1.21 \text{ rad}$	

(d)
$$\frac{\left| \begin{array}{c} \mathbf{r} \cdot \begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix} \right|}{\sqrt{9+1+9}} = \frac{19}{\sqrt{9+1+9}} = \sqrt{19}$$

Distance of plane *ABC* from the origin is $\sqrt{19}$ units.
Hence the two required planes:
 $\mathbf{r} \cdot \begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix} = 0 \quad \& \quad \mathbf{r} \cdot \begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix} = 2\sqrt{19}\sqrt{19} = 38$

5(a)	$k = \frac{1}{7}$					
(h)	Lat C ha absolute difference of two secres					
(0)	Dechobility 1	Distribution of C	two scores.			
	Probability	Distribution of G.				
		0		2		
	g	0	<u> </u>	3	4	
	P(G=g)	$\left(\frac{1}{7}\right)\left(\frac{1}{7}\right)+$	$2\left(\frac{2}{7}\right)\left(\frac{4}{7}\right)$	$2\left(\frac{1}{7}\right)\left(\frac{2}{7}\right)$	$2\left(\frac{1}{7}\right)\left(\frac{4}{7}\right)$	
		()	16		0	
		$+\left(\frac{2}{7}\right)\left(\frac{2}{7}\right)$	$=\frac{16}{49}$	$=\frac{4}{49}$	$=\frac{8}{49}$	
		$+\left(\frac{4}{-}\right)\left(\frac{4}{-}\right)$				
		(7八7)				
		21				
		$=\frac{1}{40}$				
		72				
	$E(G) = 1 \left(\frac{16}{49}\right)$ $= \frac{60}{49}$	$\left(\frac{4}{49}\right) + 3\left(\frac{4}{49}\right) + 4\left(\frac{8}{49}\right)$				
	E(2G-m) > 0					
	E(2G-m) > 0					
	2E(G) - m >	> ()				
	$2\left(\frac{60}{49}\right) - m$	> 0				
	12	20				
	$\therefore 0 < m < \frac{1}{4}$	$\frac{20}{9} = 2.45$				
	4	.7				
(a)	T :		$(C) = -1 \div -1 \div -1$. 1		
(0)	1 im s winni	ngs is based on E(G, which is the	e iong term a	verage score. He	
	may still los	e for some of the 2	games, but in th	ne long run, h	e makes a profit.	

Qn	Suggested Solution	
6(a)	Number of ways = ${}^{5}C_{1} \times {}^{12}P_{5} \times {}^{9}C_{1} = 4276800$	
(i)		<u> </u>
(ii)	Case (1) : 3 letters + 4 digits	
	$={}^{5}P_{3} \times {}^{9}P_{4} = 181440$	
	Case (2): 4 letters + 3 digits	
	$={}^{5}P_{x} \times {}^{9}P_{z} = 60480$	
	Total Number of ways	
	= 181440 + 60480	
	241020	
	= 241920	
(b)	All possible ways with 3 identical letters	
()	71 71	
	$= {}^{2}C_{1} \times {}^{13}C_{4} \times \frac{7}{21} = 1201200$	
	"e" or "s" Choose from 4 letters & 9 digits	
	All letters and no digit	
	Number of ways	
	$^{2}C = ^{4}C = 7!$ 1690	
	$= C_1 \times C_4 \times \frac{3!}{3!} = 1080$	
	All other 4 letters chosen	
	"e" or "s" All other 4 letters chosen	
	Since alphanumeric requires at least 1 digit,	
	: Using complement,	
	# ways with 3 identical letters and at least 1 digit	
	$= {}^{2}C_{1} \times \frac{7!}{3!} \times \left({}^{13}C_{4} - {}^{4}C_{4} \right)$	
	= 1199520	

Qn	Suggested Solution	
7(a)	Probability	
	$=\frac{1}{9}\cdot\frac{2}{6}+\frac{3}{9}\cdot\frac{3}{6}+\frac{5}{9}\cdot\frac{1}{6}$	
	$=\frac{16}{54}=\frac{8}{27}$	
(b)	Probability	
	1 2	
	$=\frac{\overline{9}\cdot\overline{6}}{\overline{6}}=\frac{1}{1}$	
	8 8	
	27	
(c)	To win \$6 in total for 3 games, each game he must win \$2.	
	Probability	
	$=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}\cdot\frac{1}{3}\times\frac{5}{2}\cdot\frac{1}{3}\times\frac{5}{3}$	
	969696	
	$=\frac{540}{100}$	
	157464	
	$=\frac{5}{1000}$ or 0.00343 (3 s.f.)	
	1458	
(d)	The participant should end the game by taking the first	
	option because if he proceeds to throw the die, there is only a	
	one-sixth chance that he will take home a higher amount.	
	OR	
	$\frac{2}{6}(0.02) + \frac{3}{6}(0.5) + \frac{1}{6}(2) = 0.59$	
	For the throw of die, the expected factor is 0.59 which is less	
	than 1. This means that the participant is unlikely to take	
	home a higher amount if he were to proceed to throw the die.	

8(a)	For a player to reach point B , there must be 5 right steps and 3 up steps in	
	total.	
	Let R_1 be the number of right steps taken by a player out of 5 to move from	
	X to Y. $R_1 \sim B(5, p)$	
	$P(R_1 = 3)$	
	$= {}^{5}C_{3} \times p^{3}q^{2}$	
	$=10p^3q^2$	
	Let R_2 be the number of right steps taken by a player out of 3 to move from	
	<i>Y</i> to <i>B</i> . $R_2 \sim B(3, p)$	

	$P(R_2 = 2)$	
	$= {}^{3}C_{2} \times p^{2}q$	
	$=3p^2q$	
	Required probability	
	$=10p^3q^2\times 3p^2q$	
	$=30p^5q^3$ (shown)	
(b)	$W \sim \mathbf{B}\left(15, 30\left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)^3\right) \Longrightarrow W \sim \mathbf{B}\left(15, 0.078643\right)$	
	$P(W \ge 5)$	
	$=1-P(W\leq 4)$	
	= 0.0046167	
	= 0.00462 (3 s.f.)	
($W \sim B(15, 0.078643)$	
c	E(W) = 15(0.078643) = 1.1796	
ĺ	$\operatorname{Var}(W) = 1.1796(1 - 0.078643) = 1.0869$	
	Since sample size = 40 is large, by Central Limit Theorem,	
	$\overline{W} = \frac{W_1 + \dots + W_{40}}{40} \sim N\left(1.1796, \frac{1.0869}{40}\right)$ approximately.	
	$P(\overline{W} \le 1) = 0.138 (3 \text{ s.f.})$	

9(a)	Let <i>F</i> and <i>G</i> be the mass of a Fuji and Gala apple respectively $F \sim N(205 \ 9^2)$, $G \sim N(180 \ 6^2)$
	$F - G \sim N(205 - 180, 9^2 + 6^2) \Rightarrow F - G \sim N(25, 117)$
	$\mathbf{P}(F > G) = \mathbf{P}(F - G > 0)$
	= 0.98960
	= 0.990 (3 s.f.)
(b)	Required probability
	$= \left[P(F > 203) \right]^2 \times P(F < 185) \times \frac{3!}{2!}$
	$=(0.58793)^2 \times 0.013134 \times 3$
	= 0.013620
	= 0.0136 (3 s.f.)
(c)	Let A denotes the mass of an assorted packet of ten apples.
	$A = (F_1 + F_2 + \dots + F_n) + (G_1 + G_2 + \dots + G_{10-n})$
	$\mathbf{E}(A) = n\mathbf{E}(F) + (10 - n)\mathbf{E}(G)$

	= 205n + (10 - n)180 = 25n + 1800	
	$\operatorname{Var}(A) = n\operatorname{Var}(F) + (10-n)\operatorname{Var}(G)$	
	$=9^{2}n + (10 - n)(6^{2}) = 45n + 360$	
	$A \sim N(25n+1800, 45n+360)$	
	: $A - 9F \sim N(25n + 1800 - 9(205), 45n + 360 + 9^2(9^2))$	
	$\Rightarrow A - 9F \sim N(25n - 45, 45n + 6921)$	
	$\mathbf{P}(A-9F>28) \ge 0.5$	
	Method 1: Standardisation	
	$P\left(Z > \frac{28 - (25n - 45)}{\sqrt{45n + 6921}}\right) \ge 0.5$	
	$28 - (25n - 45) \le 0 \Rightarrow n \ge 2.93$	
	Least <i>n</i> in an assorted packet is 3.	
	Method 2: Graphic Calculator	
	From GC, $P(A-9F > 28) \ge 0.5$	
	When $n = 2$, $P(A - 9F > 28) = 0.3918 < 0.5$	
	When $n = 3$, $P(A - 9F > 28) = 0.5095 > 0.5$	
	Least n in an assorted packet is 3.	
(d)	The mass of every apple is independent of one another.	

Qn	Suggested Solution	
10(a)	Let X be the waiting time for a customer, in minutes.	
	Using GC, unbiased estimate of	
	population mean, $\bar{x} = 3.0556 = 3.06$ (3sf)	
	$s^2 = 0.46667^2 = 0.21778 = 0.218$ (3sf)	
(b) (i)	$H_0: \mu = 3.3 \text{ vs } H_1: \mu < 3.3$	
	Level of significance: 5%	
	Under H ₀ , $Z = \frac{\overline{X} - 3.3}{\sqrt{\frac{0.22}{9}}} \sim N(0,1)$	

	$z = \frac{3.0556 - 3.3}{1000} = -1.56319 = -1.56(3sf)$	
	$\frac{0.22}{\sqrt{0.22}}$	
	$\sqrt{9}$	
	or p -value = $0.059004 = 0.0590$	
	Since <i>p</i> -value is $0.0590 > 0.05$, we do not reject H ₀ and conclude that there is insufficient evidence at 5% significance level to claim that the mean waiting time has improved.	
	Assumption The customers' waiting time follows a normal distribution	
(ii)	The <i>p</i> -value is the lowest level of significance for which the null hypothesis that mean waiting time being 3.3 min , is rejected .	
(c)	$\mathbf{H}_0: \boldsymbol{\mu} = k \ \text{vs} \ \mathbf{H}_1: \boldsymbol{\mu} < k$	
	Level of significance: 10% To reject H_0 , $z \le -1.28155$	
	$\frac{3.0556 - k}{\sqrt{\frac{0.22}{9}}} \le -1.28155$	
	Solving: $k \ge 3.2559$ ie, $k \ge 3.26$ (3 sf)	

•

	$y=a+bx$ $a=8.215598492$ $b=1.101083883$ $r^2=0.8298975784$ $r=0.910987145$ The value of r will not change because it is not affected by scaling / r is independent of units.	
(ii)		
(iii)	A linear model is not possible as the coconut cannot grow infinitely huge. A quadratic model is not possible as the size of coconut may reach a maximum but not decrease in size infinitely as it matures.	
(iv)	$y=a+bx$ $a=6.14535613$ $b=5.61332019$ $r^2=0.9841668828$ $r=0.9920518549$ $r=0.99205=0.992$ (3 s.f.) $h=6.1454+5.6133\ln k$ $h=6.15+5.61\ln k$ (3 s.f.)	
(v)	$13.7 = 6.1454 + 5.6133 \ln k$ $\ln k = 1.3458$ k = 3.8414 = 3.8 (1 d.p.) A coconut with diameter 13.7cm will be about 3.8 months old. The estimate is reliable since $n = 0.002$ is alose to 1 which	
(vi)	The estimate is reliable since $r = 0.992$ is close to 1 which means there is a strong positive linear relationship between diameter and ln(age of coconut), and furthermore, the estimate is an interpolation. $2.54h = 6.1454 + 5.6133 \ln k$ $h = 2.4194 + 2.20996 \ln k$ $h = 2.42 + 2.21 \ln k$ (3 s f.)	