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Mathematical Formulae 

 

1.    ALGEBRA 

 

Quadratic Equation 

   For the equation ax 2 + bx + c = 0 , 
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2.    TRIGONOMETRY 

Identities 

sin 2 A  +  cos 2 A  =  1 

sec 2 A  =  1  +  tan 2 A 

cosec 2 A  =  1  +  cot 2 A 

sin(𝐴 ± 𝐵) = sin 𝐴 cos 𝐵 ± cos 𝐴 sin 𝐵 

cos(𝐴 ± 𝐵) = cos 𝐴 cos 𝐵 ∓ sin 𝐴 sin 𝐵 

tan(𝐴 ± 𝐵) =
tan 𝐴 ± tan 𝐵

1 ∓ tan 𝐴 tan 𝐵
 

sin 2𝐴 = 2 sin 𝐴 cos 𝐴 

cos 2𝐴 = 𝑐𝑜𝑠2𝐴 − 𝑠𝑖𝑛2𝐴 = 2𝑐𝑜𝑠2𝐴 − 1 = 1 − 2𝑠𝑖𝑛2𝐴 

A

A
A

2tan1

tan2
2tan

−
=  

Formulae for   ABC 

C

c

B

b

A

a

sinsinsin
==  

a 2  =  b 2  +  c 2  −  2bc cos A 

  =  
2
1

bc sin A 
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1 The Singapore government issued a savings bond in January 2024 with a yield of 2.75% 

per year. Mr Tan invested $15 000 in the bond. The total amount he will receive, after t 

years, is given by 𝐴 = 15000(1.0275)𝑡. 

 

 (a) Calculate the total amount he will receive in January 2030, correct to the 

nearest dollar. 

[2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (b) In which year will the amount first exceed $22 000?  [2] 
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2 (a) Without using a calculator, evaluate the value of 6𝑥 given that             

22𝑥+6 × 35𝑥−1 = 27𝑥+1. 

 

[5] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Solve the equation 𝑙𝑜𝑔𝑥9 = 5𝑙𝑜𝑔3𝑥, giving your answers correct to 2 significant 

figures. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] 
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3 (a) A curve has the equation 𝑦 = (𝑝 − 1)𝑥2 + 2(𝑝 − 3), where p is a constant. A line 

has the equation 𝑦 = 6𝑥 + 3. Find the range of values of p if the curve lies 

completely above the line. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] 

 (b) By expressing 𝑦 = −2𝑥2 + 10𝑥 − 5 in the form 𝑦 = 𝑎(𝑥 + 𝑏)2 + 𝑐, where a, b and 

c are constants, find the maximum value of y. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] 
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4 (a) 
In the binomial expansion of (1 −

2

7
𝑥)

𝑛

, the sum of the coefficients of the second 

and third terms is zero. Calculate the value of 𝑛 and hence, find the sixth term. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] 
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 (b) 
Write down the general term in the binomial expansion of  (

1

𝑥3
− 2𝑥)

8

. 

Hence, find the value of the constant term in the expansion of                    

(3 +
𝑥2

2
)

2

(
1

𝑥3 − 2𝑥)
8

. 

 

 

 

[6] 
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5 (a) The function f is defined as 𝑓(𝑥) = 𝑝 − 𝑞 sin(𝑟𝑥), for −𝜋 ≤ 𝑥 ≤ 𝜋, where p, q and r 

are positive integers. Given that the amplitude of the function is 6, the period is  and 

the maximum value is 9. 

  (i) State the values of p, q and r. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) Hence, sketch the graph of 𝑓(𝑥). [2] 
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 (b) The acute angles A and B are such that cot(𝐴 − 𝐵) =
1

3
  and cot 𝐴 =

1

5
. 

Without using a calculator, find the exact value of cos 𝐵. 

 

[5] 
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6 A circle passes through the points (−5, 12) and (9, 14). The centre of the circle lies on the 

line 2𝑦 + 𝑥 = 15. 

 (a) Find the equation of the circle. [7] 
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 (b) Explain why the line 𝑦 = 𝑚𝑥 + 6 intersects the circle at 2 distinct points for all 

values of 𝑚. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] 

7 (a) A curve has the equation 𝑦 =
3𝑥−5

4𝑥+1
 for 𝑥 > 0. Explain, with working, why the curve 

has no stationary points. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] 
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 (b) Given that 𝑓(𝑥) is such that 𝑓′(𝑥) = cos 4𝑥 − 3 sin 2𝑥 and 𝑓(𝜋) = 0, show that 

𝑓′′(𝑥) + 4𝑓(𝑥) = −3(sin 4𝑥 + 2).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] 

 (c) Given that 
𝑑

𝑑𝑥
(

2−𝑥

√1−2𝑥
) =

𝑎𝑥+𝑏

√(1−2𝑥)3
, find the value of a and b. [4] 
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8 A curve 𝑦 = 𝑓(𝑥) passes through the point (1, 10).  

The graph of 𝑦 = 𝑓′(𝑥) is shown below. 

 

 

 

 

 

 

 

 (a) State the x-coordinates of the stationary points of the curve 𝑦 = 𝑓(𝑥) and 

hence, determine their nature. 

[3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Find the equation of the normal to the curve at the point (1, 10). [2] 

   

 

 

 

 

 

 

 

 

 

 

𝑦 = 𝑓′(𝑥) 

(1, −8) 

3 −3 
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9 The diagram below shows a wooden door stopper in the shape of a right prism with a 

volume of 60 cm3. The cross-section of the prism is a triangle, with side lengths of 2y cm 

and 6y cm respectively, with a width of x cm. 

                                  

 (a) Express x in terms of y and show that the total surface area of the door stopper A, is 

given as 𝐴 = 12𝑦2 +
20

𝑦
(√10 + 4) cm2. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] 

2𝑦 cm 

6𝑦 cm 

𝑥 cm 
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 (b) Given that y can vary, find the value of y for which A has a minimum value. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

10 (a) Find all angles between 0 and 2𝜋 which satisfy 3 cos 2𝑥 + 4 sin 𝑥 = 3. [4] 
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 (b) Without using a calculator,  

 
         (i) show that cos

7𝜋

12
=

√2−√6

4
. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         (ii) and hence, find the exact value of sin2 7𝜋

12
. [3] 
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11  

 

 

 

 

 

 

 

 

 

 Points A, B, C and D are inscribed in a circle such that AB = AD.  A tangent to the circle at 

point A meets the line CD produced at E. The lines AC and BD intersects at point F. 

 (a) Prove that the line BFD is parallel to line AE. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

F 
B 

C 

D 

E 
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 (b) Show that triangle ABC is similar to triangle EDA. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--- End of Paper --- 
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4E AM Prelim 2024 P2 Solutions 

1.  The Singapore government issued a savings bond in January 2024 with a 

yield of 2.75% per year. Mr Tan invested $15 000 in the bond. The total 

amount he will receive, after t years, is given by 𝐴 = 15000(1.0275)𝑡. 

 

 (a) Calculate the total amount he will receive in January 2030, correct to the 

nearest dollar. 

[2] 

   

𝐴 = 15000(1.0275)6 

= 17651.52 

 

𝐴𝑚𝑜𝑢𝑛𝑡 = $ 17652 

 

 

 

 

 

 

 

 

M1 

 

 

A1 

 (b) In which year will the amount first exceed $22 000?  [2] 

   

22000 = 15000(1.0275)𝑡 

 

1.0275𝑡 =
22

15
 

 

𝑡 = ln (
22

15
) / ln 1.0275 

𝑡 = 14.117 

 

Year 2039. 

 

 

 

 

 

 

 

 

 

 

 

M1 

 

A1 
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2. (a) Without using a calculator, evaluate the value of 6𝑥 given that             

22𝑥+6 × 35𝑥−1 = 27𝑥+1 

 

[5] 

   

22𝑥+6 × 35𝑥−1 = 33𝑥+3 

22𝑥 × 26 × 35𝑥 × 3−1 = 33𝑥 × 33 

22𝑥 × 35𝑥

33𝑥
=

33

26 × 3−1
 

22𝑥 × 32𝑥 =
34

26
 

62𝑥 =
81

64
 

6𝑥 =
9

8
 

 

 

 

 

 

M1 

 

M1 

 

M1 

 

M1 

 

A1 

 

 (b) Solve the equation 𝑙𝑜𝑔𝑥9 = 5𝑙𝑜𝑔3𝑥, giving your answers correct to 2 

significant figures. 

[4] 

   

𝑙𝑜𝑔𝑥9 = 5𝑙𝑜𝑔3𝑥 

𝑙𝑜𝑔39

𝑙𝑜𝑔3𝑥
= 5𝑙𝑜𝑔3𝑥 

2𝑙𝑜𝑔33 = 5(𝑙𝑜𝑔3𝑥)2 

(𝑙𝑜𝑔3𝑥)2 =
2

5
 

𝑙𝑜𝑔3𝑥 = ±√
2

5
 

𝑥 = 3
√2

5  𝑜𝑟 3
−√2

5 

𝑥 = 2.0 𝑜𝑟 0.50 

 

 

 

 

 

 

M1 

 

M1 

 

 

 

M1 

A1 
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3. (a) A curve has the equation 𝑦 = (𝑝 − 1)𝑥2 + 2(𝑝 − 3), where p is a constant. A 

line has the equation 𝑦 = 6𝑥 + 3. Find the range of values of p if the curve 

lies completely above the line. 

 

 

[5] 

   

(𝑝 − 1)𝑥2 + 2𝑝 − 6 = 6𝑥 + 3 

(𝑝 − 1)𝑥2 − 6𝑥 + 2𝑝 − 9 = 0 

𝑏2 − 4𝑎𝑐 < 0 

(−6)2 − 4(𝑝 − 1)(2𝑝 − 9) < 0 

36 − (4𝑝 − 4)(2𝑝 − 9) < 0 

36 − 8𝑝2 + 8𝑝 + 36𝑝 − 36 < 0 

−8𝑝2 + 44𝑝 < 0 

8𝑝2 − 44𝑝 > 0 

4𝑝(2𝑝 − 11) > 0 

 

 

𝑝 < 0 𝑜𝑟 𝑝 > 5.5 

                                             (rejected) 

 

 

 

 

 

M1 

 

 

M1 

 

M1 

 

 

A2 

 (b) By expressing 𝑦 = −2𝑥2 + 10𝑥 − 5 in the form 𝑦 = 𝑎(𝑥 + 𝑏)2 + 𝑐, where 

a, b and c are constants, find the maximum value of y. 

 

[3] 

   

𝑦 = −2(𝑥2 − 5𝑥) − 5 

= −2 [𝑥2 − 5𝑥 + (−
5

2
)

2

− (−
5

2
)

2

] − 5 

= −2[(𝑥 − 2.5)2 − 2.52] − 5 

= −2(𝑥 − 2.5)2 + 7.5 

  

Max value of y = 7.5 

 

 

 

 

 

 

 

M1 

 

 

M1 

 

A1 
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4. (a) 
In the binomial expansion of (1 −

2

7
𝑥)

𝑛

, the sum of the coefficient of the 

second and third term is zero. Calculate the value of 𝑛 and hence, find the 

sixth term. 

 

 

[4] 

   

𝑇2 = (
𝑛
1

) (1)𝑛−1 (−
2

7
𝑥)

1

= −
2

7
𝑛𝑥 

𝑇3= (
𝑛
2

) (1)𝑛−2 (−
2

7
𝑥)

2

=
𝑛(𝑛 − 1)

2
(

4

49
𝑥2) 

 

−
2

7
𝑛 +

2𝑛(𝑛 − 1)

49
= 0 

−14𝑛 + 2𝑛2 − 2𝑛 = 0 

2𝑛2 − 16𝑛 = 0 

2𝑛(𝑛 − 8) = 0 

𝑛 = 0  𝑜𝑟 𝑛 = 8 

                                               (rejected) 

𝑇6 = (
8
5

) (1)8−5 (−
2

7
𝑥)

5

= −
256

2401
𝑥5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1 

 

M1 

 

 

 

 

 

 

M1 

 

 

A1 
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 (b) 
Write down the general term in the binomial expansion of  (

1

𝑥3 − 2𝑥)
8

. 

Hence, find the value of the constant term in the expansion of                    

(3 +
𝑥2

2
)

2

(
1

𝑥3 − 2𝑥)
8

. 

 

 

 

[6] 

   

𝑇𝑟+1 = (
8
𝑟

) (
1

𝑥3
)

8−𝑟

(−2𝑥)𝑟 

= (
8
𝑟

) 𝑥−24+3𝑟(−2)𝑟𝑥𝑟 

= (
8
𝑟

) (−2)𝑟𝑥4𝑟−24 

(3 +
𝑥2

2
)

2

= 9 + 3𝑥2 +
𝑥4

4
 

𝑥4𝑟−24 = 𝑥0      𝑜𝑟  𝑥4𝑟−24 = 𝑥−2             𝑜𝑟 𝑥4𝑟−24 = 𝑥−4  

𝑟 = 6      𝑜𝑟 𝑛𝑜 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑙𝑢𝑒       𝑜𝑟    𝑟 = 5 

𝑇7= (
8
6

) (−2)6 = 1792 

𝑇6= (
8
5

) (−2)5 = −1792 

Constant term = (1792 × 9) + (
1

4
× −1792) = 15680 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 

 

B1 

 

 

M1 

M1 

 

M1 

A1 
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5. (a) The function f is defined as 𝑓(𝑥) = 𝑝 − 𝑞 sin(𝑟𝑥), for −𝜋 ≤ 𝑥 ≤ 𝜋, where p, 

q and r are positive integers. Given that the amplitude of the function is 6, the 

period is  and the maximum value of is 9. 

 

  (i) State the values of p, q and r. [3] 

   

𝑝 = 3 

𝑞 = 6 

𝑟 = 2 

 

 

 

 

 

 

 

 

B3 

  (ii) Hence, sketch the graph of 𝑓(𝑥). [2] 

   

                                                       9 

 

 

                                                      3 

 

                       −𝜋         −
𝜋

2
                                

𝜋

2
                𝜋 

−3                  

 

 

- Shape of curve and range 

- Points plotted correctly  

 

 

 

 

 

 

 

 

 

 

 

A2 
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 (b) The acute angles A and B are such that cot(𝐴 − 𝐵) =
1

3
  and cot 𝐴 =

1

5
. 

Without using a calculator, find the exact value of cos 𝐵. 

 

[5] 

   

cot 𝐴 =
1

5
 

tan 𝐴 = 5 

cot(𝐴 − 𝐵) =
1

3
 

tan(𝐴 − 𝐵) = 3 

tan 𝐴 − tan 𝐵

1 + tan 𝐴 tan 𝐵
= 3 

tan 𝐴 − tan 𝐵 = 3 + 3 tan 𝐴 tan 𝐵 

5 − tan 𝐵 = 3 + 15 tan 𝐵 

16 tan 𝐵 = 2 

tan 𝐵 =
1

8
 

         

 

 

cos 𝐵 =
8

√65
=

8√65

65
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 

 

 

 

M1 

 

 

M1 

 

M1 

 

 

 

 

A1 
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6.  A circle passes through the points (−5, 12) and (9, 14). The centre of the 

circle lies on the line 2𝑦 + 𝑥 = 15. 

 

 (a) Find the equation of the circle. [7] 

  
𝑚 =

14 − 12

9 − (−5)
=

1

7
 

𝑚⊥ = −7 

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 = (
−5 + 9

2
,
12 + 14

2
) = (2, 13) 

13 = −7(2) + 𝑐 

𝑐 = 27 

Eqn of perpendicular bisector 𝑦 = −7𝑥 + 27 

2(−7𝑥 + 27) + 𝑥 = 15 

−14𝑥 + 54 + 𝑥 = 15 

−13𝑥 = −39 

𝑥 = 3 

𝑦 = 6 

Centre of circle (3,6) 

Radius = √(9 − 3)2 + (14 − 6)2 = 10 𝑢𝑛𝑖𝑡𝑠 

Equation of circle 

(𝑥 − 3)2 + (𝑦 − 6)2 = 100 

Or 𝑥2 − 6𝑥 + 𝑦2 − 12𝑦 − 55 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 

 

B1 

 

 

M1 

 

 

 

 

M1 

 

M1 

M1 

 

A1 
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 (b) Explain why the line 𝑦 = 𝑚𝑥 + 6 intersects the circle at 2 distinct points for 

all values of 𝑚. 

 

[4] 

  (𝑥 − 3)2 + (𝑚𝑥 + 6 − 6)2 = 100 

𝑥2 − 6𝑥 + 9 + 𝑚2𝑥2 − 100 = 0 

(1 + 𝑚2)𝑥2 − 6𝑥 − 91 = 0 

 

𝑏2 − 4𝑎𝑐 = (−6)2 − 4(1 + 𝑚2)(−91) 

= 400 + 364𝑚2 

400 + 364𝑚2 > 0 for all values of m 

∴line cuts circle at 2 distinct points 

 

 

 

 

 

 

 

 

M1 

 

 

M1 

M1 

 

A1 

7. (a) A curve has the equation 𝑦 =
3𝑥−5

4𝑥+1
 for 𝑥 > 0. Explain, with working, why the 

curve has no stationary points. 

 

[3] 

  𝑑𝑦

𝑑𝑥
=

3(4𝑥 + 1) − 4(3𝑥 − 5)

(4𝑥 + 1)2
 

=
12𝑥 + 3 − 12𝑥 + 20

(4𝑥 + 1)2
 

=
23

(4𝑥 + 1)2
 

Since (4𝑥 + 1)2 ≥ 0 for all x, 
𝑑𝑦

𝑑𝑥
> 0  

Curve has no stationary point as 
𝑑𝑦

𝑑𝑥
≠ 0. 

 

 

 

 

 

 

M1 

 

 

M1 

 

 

A1 
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 (b) It is given that 𝑓(𝑥) is such that 𝑓′(𝑥) = cos 4𝑥 − 3 sin 2𝑥. Given also that 

𝑓(𝜋) = 0, show that 𝑓′′(𝑥) + 4𝑓(𝑥) = −3(sin 4𝑥 + 2).  

 

[4] 

   

𝑓(𝑥) =
1

4
𝑠𝑖𝑛4𝑥 +

3

2
𝑐𝑜𝑠2𝑥 + 𝑐 

𝑓(𝜋) = 0 

3

2
+ 𝑐 = 0 

𝑐 = −
3

2
 

𝑓(𝑥) =
1

4
sin 4𝑥 +

3

2
cos 2𝑥 −

3

2
 

𝑓′′(𝑥) = −4 sin 4𝑥 − 6 cos 2𝑥 

𝑓′′(𝑥) + 4𝑓(𝑥) = −4 sin 4𝑥 − 6 cos 2𝑥 + 4 (
1

4
sin 4𝑥 +

3

2
cos 2𝑥 −

3

2
) 

= −4 sin 4𝑥 − 6 cos 2𝑥 + sin 4𝑥 + 6 cos 2𝑥 − 6 

= −3 sin 4𝑥 − 6 

= −3(sin 4𝑥 + 2) (𝑠ℎ𝑜𝑤𝑛) 

 

 

M1 

 

 

 

 

M1 

M1 

 

 

 

 

 

A1 

 (c) Given that 
𝑑

𝑑𝑥
(

2−𝑥

√1−2𝑥
) =

𝑎𝑥+𝑏

√(1−2𝑥)3
, find the value of a and b. [4] 

   

𝑑

𝑑𝑥
(

2 − 𝑥

√1 − 2𝑥
) =

(1 − 2𝑥)
1
2(−1) − (2 − 𝑥) (

1
2) (1 − 2𝑥)−

1
2(−2)

(1 − 2𝑥)
 

 

=
(1 − 2𝑥)−

1
2[(−1)(1 − 2𝑥) − (2 − 𝑥) (

1
2) (−2)

(1 − 2𝑥)
 

=
(1 − 2𝑥)−

1
2[−1 + 2𝑥 + 2 − 𝑥]

(1 − 2𝑥)
 

=
1 + 𝑥

(1 − 2𝑥)
3
2

 

 

𝑎 = 1,   𝑏 = 1 
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M1 

 

M1 

 

 

A1 
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8.  A curve 𝑦 = 𝑓(𝑥) passes through the point (1, 10).  

 

 

 

 

 

 

 

  The graph shown above is 𝑦 = 𝑓′(𝑥).  

 (a) State the x-coordinates of the stationary points of the curve 𝑦 = 𝑓(𝑥) and 

hence, determine their nature. 

[3] 

   

𝑥 = −3                                            𝑎𝑛𝑑                        𝑥 = 3     

 

𝑥 −3.1 −3 −2.9  2.9 3 3.1 

𝑓′(𝑥) + 0 − − 0 + 

 

Maximum point                                                    Minimum point 

 

 

 

 

 

 

A1 

 

 

 

 

A2 

 

 

 

 

 (b) Find the equation of the normal to the curve at  the point (1, 10). [2] 

  𝑥 = 1, 𝑓′(𝑥) = −8 

Gradient of tangent = −8 

Gradient of normal = 
1

8
 

10 =
1

8
(1) + 𝑐  

𝑐 =
79

8
 

𝑦 =
1

8
𝑥 +

79

8
  𝑜𝑟 8𝑦 = 𝑥 + 79 

 

 

 

 

B1 

 

 

 

 

A1 

𝑦 = 𝑓′(𝑥) 

(1, −8) 

3 −3 
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9.  The diagram below shows a wooden door stopper in the shape of a right 

prism with a volume of 60 cm3. The cross-section of the prism is a triangle, 

with side lengths of 2y and 6y cm respectively, with a width of x cm. 

                                  

 

 (a) Express x in terms of y and show that the total surface area of the door 

stopper A, is given as 𝐴 = 12𝑦2 +
20

𝑦
(√10 + 4) 𝑐𝑚2. 

 

[3] 

   

1

2
× 2𝑦 × 6𝑦 × 𝑥 = 60 

𝑥 =
10

𝑦2
 

Total S.A = 2 (
1

2
× 2𝑦 × 6𝑦) + 2𝑥𝑦 + 6𝑥𝑦 + (√(2𝑦)2 + (6𝑦)2)𝑥 

= 12𝑦2 + 8𝑥𝑦 + (√40𝑦2) 𝑥 

= 12𝑦2 + 8𝑦 (
10

𝑦2
) + 2𝑦√10 (

10

𝑦2
) 

= 12𝑦2 +
80

𝑦
+

20√10

𝑦
 

= 12𝑦2 +
20

𝑦
(√10 + 4) 𝑐𝑚2 

 

 

 

 

 

 

 

 

 

 

 

 

B1 

 

M1 

 

 

 

 

M1 

2𝑦 𝑐𝑚 

6𝑦 𝑐𝑚 

𝑥 𝑐𝑚 
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 (b) Given that y can vary, find the value of y for which A has a minimum value. [3] 

   

𝑑𝐴

𝑑𝑦
= 24𝑦 − (

20

𝑦2
) (√10 + 4) 

24𝑦 − (
20

𝑦2
) (√10 + 4) = 0 

24𝑦3 = 20(√10 + 4) 

𝑦3 =
5

6
(√10 + 4) 

𝑦 = 1.8139 

𝑑2𝐴

𝑑𝑦2
= 24 +

40

𝑦3
(√10 + 4) 

= 72 > 0 

Value of A is at a minimum. 

 

M1 

 

 

 

 

 

 

 

A1 

 

M1 

10. (a) Find all angles between 0 and 2𝜋 which satisfy 3 cos 2𝑥 + 4 sin 𝑥 = 3. [4] 

   

3 cos 2𝑥 + 4 sin 𝑥 = 3 

3(1 − 2 sin2 𝑥) + 4𝑠𝑖𝑛𝑥 − 3 = 0 

3 − 6 sin2 𝑥 + 4𝑠𝑖𝑛𝑥 − 3 = 0 

−6 sin2 𝑥 + 4𝑠𝑖𝑛𝑥 = 0 

−2 sin 𝑥(3 sin 𝑥 − 2) = 0 

−2 sin 𝑥 = 0      𝑜𝑟    3 sin 𝑥 − 2 = 0 

𝑠𝑖𝑛𝑥 = 0         𝑜𝑟       𝑠𝑖𝑛𝑥 =
2

3
 

𝐵𝑎𝑠𝑖𝑐 𝑎𝑛𝑔𝑙𝑒 = 0         𝑜𝑟 0.72972 

𝑥 = 𝜋        𝑜𝑟   𝑥 = 0.72972 𝑜𝑟 2.4118 

 

𝑥 = 0.730, 2.41, 𝜋 

                                             (minus 1 mark for each wrong value) 

 

 

 

 

 

 

 

M1 

 

 

 

M1 

 

 

 

 

 

A2  
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 (b) Without using a calculator,  

 (i) 
Show that cos

7𝜋

12
=

√2−√6

4
. 

[3] 

   

cos
7𝜋

12
= cos (

3𝜋

12
+

4𝜋

12
) 

= cos (
𝜋

4
+

𝜋

3
) 

= (cos
𝜋

4
) (cos

𝜋

3
) − (sin

𝜋

4
) (sin

𝜋

3
) 

= (
1

√2
) (

1

2
) − (

1

√2
) (

√3

2
) 

=
1 − √3

2√2
 

=
√2 − √6

4
   (𝑠ℎ𝑜𝑤𝑛) 

 

 

 

 

 

 

M1 

 

 

M1 
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 (ii) Hence, find the exact value of sin2 7𝜋

12
. [3] 

   

sin2
7𝜋

12
= 1 − cos2

7𝜋

12
 

= 1 − (
√2 − √6

4
)

2

 

= 1 −
2 − 2√2√6 + 6

16
 

=
16 − (2 − 2√12 + 6)

16
 

=
16 − 2 + 4√3 − 6

16
 

=
8 + 4√3

16
 

=
2 + √3

4
 

 

 

 

M1 

 

M1 

 

 

 

 

 

 

A1 
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12.   

 

 

 

 

 

 

 

 

 

  Points A, B, C and D is inscribed in a circle such that AB = AD.  A tangent to 

the circle at point A meets the line CD produced at E. The lines AC and BD 

intersects at point F. 

 

 (i) Prove that the line BFD is parallel to line AE. [3] 

   

∠𝐴𝐵𝐷 = ∠𝐷𝐴𝐸(𝑎𝑙𝑡. 𝑠𝑒𝑔. 𝑡ℎ𝑚) 

∠𝐴𝐵𝐷 = ∠𝐴𝐷𝐵 (𝑏𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑠𝑜 ∆) 

∠𝐴𝐵𝐷 = ∠𝐷𝐴𝐸 

BFD is parallel to AE as ∠𝐴𝐵𝐷 𝑎𝑛𝑑 ∠𝐷𝐴𝐸 are equal, alternate angles in 

parallel lines. 

 

 

M1 

 

M1 
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 (ii) Show that triangle ABC is similar to triangle EDA. [3] 

   

∠𝐵𝐶𝐴 = ∠𝐵𝐷𝐴 (∡𝑖𝑛 𝑠𝑎𝑚𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

∠𝐵𝐶𝐴 = ∠𝐷𝐴𝐸 (𝑝𝑎𝑟𝑡 (𝑖)) 

∠𝐴𝐵𝐶 + ∠𝐶𝐷𝐴 = 180 (∡𝑖𝑛 𝑜𝑝𝑝 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

∠𝐶𝐷𝐴 + ∠𝐸𝐷𝐴 = 180 (𝑎𝑑𝑗. ∡𝑜𝑛 𝑎 𝑠𝑡𝑟. 𝑙𝑖𝑛𝑒) 

∠𝐴𝐵𝐶 = ∠𝐸𝐷𝐴 

∆𝐴𝐵𝐶 𝑖𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 ∆𝐸𝐷𝐴 (angle-angle theorem). 
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