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From graph of f,  fR 0,   

  1f
D x   0, . 

x =1 

y =0 



(ii) 

 

(iii) Since 1 1ff ( ) f f ( )x x x     have the same rule, we investigate 

the domain 

 1f f
1,D      1ff

0,D     

Taking the intersection of these domains, 

Range of values is 1x  . 

4 (i) Equation of plane is      
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A normal vector to plane is 

1 2 2

2 0 1

0 1 4

      
        
     

     

 

 

 

 

 

Hence vector equation of the plane is 

x =1 

y =1 

y = f(x) 
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(iii) Using mid-point theorem  
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5(i) 
The height of triangle ADG is 
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Hence the minimum value of S occurs when 
1

2
t  . 

Minimum  2 24 2 2 8S a a    . 

(iii) To sketch the graph of  
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6 (a) 

 

Since adjacent balls do not sum up to two, balls numbered ‘1’ 

needs be separated.  

Number of ways of arranging the other balls with no 

restriction = 6! 

2
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1 21
tan ,8

2
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Slotting in the balls numbered ‘1’, permutation is done as 

balls are of different colour = 7

3 3!C   

No of ways 

7

3 3!6!

151200

C 




  

(b) Method 1 

 

 

 

 

      

  Table of 5             Table of 6 

Case 1 – 2 friends are seated together at table of 5 

No. of ways to select 3 other friends and arrange them at the 

table of 5 =    9

3 (4 1)!C    

No. of ways to arrange the 2 friends = 2! 

No. of ways to sit the remaining friends at the table of 6 

 = (6-1)! = 5! = 120 

Total no. of ways = 9

3 (4 1)! 2! 5!C     =120960 

Case 2 – 2 friends are seated together at table of 6 

 

 

 

 Table of 5       Table of 6 

No. of ways to select 4 other friends and arrange them at the 

table of 6 = 9

4 (5 1)!C   = 3024 

No. of ways to sit the 2 friends at the table of 6 =  2! 

2 friends 

X 

X 

X 

(6-1)! 

(5-1)! 

X 

2 friends 

X X 

X 



No. of ways to sit the remaining friends at the table of 5 

 = (5-1)! = 4! = 24 

Total no. of ways = 9

4 (5 1)! 2! 4!C     = 145152 

No of ways to arrange 11 friends without restrictions 

= 11

5 (5 1)! (6 1)!C      = 1330560 

Total no. of ways of arranging 11 people such that 2 particular 

friends are not seated together  

= 1330560 – 120960 – 145152 = 1064448 

 Method 2 

Alternative Method 

Case 1: Two particular friends seated at table of 5 

 

No of ways 
9

3C 2! 3 2

1209 0

5!
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9

3C : Selection of friends to be seated at table of 5. This 

automatically selects friends to be seated at table of 6. 

 

(3-1)!: Arranging the 3 other friends in table of 5. 

 
3

2P : Slotting in the 2 particular friends 

 

5!: Arranging the 6 other friends in table of 6. 

 

Case 2: Two particular friends seated at table of 6 

No of ways 
9

4C 4! 3! 4

21772

3

8
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4C : Selection of friends to be seated at table of 5. This 

automatically selects friends to be seated at table of 6. 

 

(5-1)!: Arranging the 5 friends in table of 5. 

 

4!: Arranging the 5 friends in table of 6. 

 
4

2P : Slotting in the 2 particular friends 

 

 



Case 3: Two particular friends seated at separate tables 

No of ways 
9

4C 4! 5!

7 5 60

2

2 7
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4C : Selection of friends to be seated at table of 5. This 

automatically selects friends to be seated at table of 6. 

 

(5-1)!: Arranging the 5 friends in table of 5. 

 

(6-1)!: Arranging the 6 friends in table of 6. 

 

x2: The 2 particular friends can switch tables 

 

Total no. of ways 

120960 217728 725760

1064448

  


  

7(i) Given P( | ') 0.83A B   

    

P( ')
0.83

P( ')

0.6
0.83

1 P( )

( ) 1 0.72289 0.27711 0.277

A B

B

B

P B


 

 


    

 

(ii) Let P( A B ) = x 

 

 

 

 

 

 

 

 

 

 

P( ) ( ') ( )

0.6 0.27711

0.87711

A B P A B P B

x x

   

   



 

P( ) ' 1 0.87711 0.12289A B     

Since P( ') 0.83A B   

0.6 0.12289 0.83

0.10711

x

x

   

 
  

x 

A B 

0.6 0.27711-x 

0.12289 



P( A B ) = 0.107 . 

(iii) P( ')
P( | ')

P( ')

0.27711 0.10711
      

1 (0.6 0.10711)

0.17

0.29289

0.58042

0.580

B A
B A

A







 







 

Since P( | ')B A  P( )B   B is not independent of A’ 

 A and B are not independent. 

8 (i) P(Linda scores 30 points) = ({hit, hit, hit})P   

                                          =  0.63  

                                          =   
27

125
  (0.216) 

(ii) Let X be the number of points scored by Linda in a round. 

X 0 10 20 30 

P(X=x) 0.4 0.6×0.4 

=0.24 

0.62×0.4 

=0.144 

0.216 

 

(iii) E(X) = 0×0.4 + 10×0.24 + 20×0.144 + 30×0.216 

        =11.76 

 

E(X2) = 02×0.4 + 102×0.24 + 202×0.144 + 302×0.216  

         = 276 

 

Var(X) = E(X2) – [E(X)]2 

             = 276 – 11.762 = 137.7024 

(iv) Let X1 be the number of points scored by Linda in Round 1 

and let X2 be the number of points scored by Linda in Round 

2. 



P(Linda scores more in round 2 than in round 1) 

1 2

1 2

1 2

1 2

1 2

1 2

( 0 &  10)

( 10 &  20)

( 20 &  30)

( 0) ( 10)

( 10) ( 20)

( 20) ( 30)

0.4 (1 0.4)

0.24 (0.144 0.216) 0.144 0.216

0.357504 0.358 (3 s.f.)

P X X

P X X

P X X

P X P X

P X P X

P X P X

  

  

  

  

  

  

  

    

 

  

9 (i) 

 

(ii) (a) Product moment correlation coefficient , 0.9996r   

(b) Product moment correlation coefficient, 0.9514r   

(iii) From the scatter diagram, as x increases, the value of y 

increases at a decreasing rate that seems to fit model (a) 

better. Also, the value of r  for model (a) is closer to 1 as 

compared to model (b).  

 

(iv) We use the regression line y on ln x 

 6.1619 ln 17.223 6.16ln 17.2y x x     

When 210x  , 

 6.1619 ln 210 17.223 15.725 15.7y      

18.8 

56 345 

y 

7.62 

x 



As the value of r  is close to 1 and 210x   is within the 

given data range, the estimation may be reliable. 

10 (i) Let S be the random variable “radius of a small table in cm’. 

Let L be the random variable “radius of a large table in cm’. 

S ~ N 2(30,  2 )  

L ~ N 2(50,  5 )  

 

2

1 2 3 4 5

1 2 3 4 5

+ + + +  ~ N(5 30,  5 2 )

+ + + +  ~ N 150,  20

S S S S S

S S S S S

 
 

1 2 3 4 5P( + + + + 160) 0.98733 0.987S S S S S     

(ii) 

 

2 2 2

1 2 3

1 2 3

+ + 2  ~ N(3 30 2 50,  3 2 2 5 )

+ + 2  ~ N 10,  112

S S S L

S S S L

      

 
 

1 2 3 1 2 3( + + 2 ) ( + + 2 0) 0.82765 0.828P S S S L P S S S L       

(iii) The radii of the large and small round tables are independent 

of one another. 

(iv) Let X be the random variable “number of large tables, out of 

12, with radius less than 40 cm”. 

 ~ B(12,  P( 40 ))

 ~ B(12,  0.022750)

X L

X


 

 P( 2 ) 1 P 1

1 0.97064

0.029357

0.0294

X X   

 





 

(v) Let Y be the random variable “radius of a medium sized table 

in cm” 



 

P( 44 ) 0.20

P( 44 ) 0.80

44
0.80

44
0.84162

44 0.84162 1

Y

Y

P Z








 

 

 

 
  

 




     

 

 

 

P( 40 ) 0.30

40
0.30

40
0.52440

40 0.52440 2

Y

P Z








 

 

 
  

 


 

     

 

Solving (1) and (2),  

44 0.84162 40 0.5244

4 1.3660

2.9283 2.93

41.535 41.5

 







  



 

 

 

11 (i) Unbiased estimate of population mean,  

24730
 494.60

50
x    

Unbiased estimate for population variance, 

2
2 1 24730

12242631 228.02
49 50

s
 

   
 

  

Let X be the volume of beer in one beer can in ml and   be 

the population mean volume of beer of the beer cans. 

0

1

: 500

: 500

H

H








  

Under 0H  , since n = 50 is large, by the Central Limit 

Theorem,  



2

~ 500,
50

s
X N

 
 
 

 approximately. 

Use a left-tailed z-test at the 1% level of significance. 

Test statistic: 
500

~ (0,1)

50

X
Z N

s


  . 

Reject 0H  if p-value 0.01 . 

From the sample, 

value 0.0057248 0.00572p     

Since p-value 0.00572 0.01  , we reject 0H . There is 

sufficient evidence at the 1% level of significance to conclude 

that the volume of cola in a can is less than 500 ml. 

(ii) As we are using a two tailed test instead of a one tailed test, p-

value = 2 (0.00572) = 0.01144. 

Hence we do not reject 0H . There is insufficient evidence at 

the 1% level of significance to conclude that the volume of 

cola in a can is not 500 ml. 

(iii) Let X be the volume of cola in one can in ml and   be the 

population mean volume of cola of the cans. 

0

1

: 500

: 500

H

H








  

Unbiased estimate of population variance, 

 
22 40

39
xs s   

Under 0H  , since n = 40 is large, by the Central Limit 

Theorem,  

2

~ 500,
39

xs
X N

 
 
 

 approximately. 

Use a two-tailed z-test at the 1% level of significance. 



Test statistic: 
500

~ (0,1)

39

x

X
Z N

s


  

Critical values: (1) (2)2.5758    2.5758crit critz z    . 

Reject  0H if  

2.5758    or    2.5758cal calz z    . 

Since 0H  is rejected, 

2 2

2 2

2.5758                   or              2.5758

500 500
2.5758           or     2.5758

39 39

500 2.5758      or                500 2.5758
39 39

500 0.41246           or     

cal cal

x x

x x

x

z z

x x

s s

s s
x x

s x

  

 
  

   

              500 0.41246

    500 0.412           or                 500 0.412

x

x x

x s

s x x s

 

   

 

Hence the decision rule should read: 

Conclude that the volume of cola differs from 500 ml if the 

value of x  lies within this range :

500 0.412           or                 500 0.412x xs x x s    . 

(iv) 

 

 

 

Let X be the volume of cola in one can in ml. 

since n  is large, by the Central Limit Theorem,  

 1 2 .... ~ 500 ,144nX X X N n n    approximately. 

Let Y be the volume of grape juice in one packet in ml. 

since 2n  is large, by the Central Limit Theorem,  

 1 2 2.... ~ 500 ,50nY Y Y N n n    approximately. 

1 2 1 2 2.... .... ~ (1000 ,194 )n nX X X Y Y Y N n n        



1 2 1 2 2( .... .... 120,000) 0.95

120,000 1000
0.95

194

120,000 1000
1.6449

194

120,000 1000 1.6449 194

1000 22.9 120,000 0

n nP X X X Y Y Y

n
P Z

n

n

n

n n

n n

        

 
  

 




 

  

  

 

 


