2017 Prelim Paper 2 Solution

1	Method 1
	z - wi = 3
	$\Rightarrow w = \frac{z-3}{i} = 3i - zi - (1)$
	Substitute (1) into $z^2 - w + 6 + 3i = 0$
	$z^2 - (3i - zi) + 6 + 3i = 0$
	$\Rightarrow z^2 + z\mathbf{i} + 6 = 0$
	$\Rightarrow z = \frac{-i \pm \sqrt{(i)^2 - 4(1)(6)}}{2} = \frac{-i \pm \sqrt{-1 - 24}}{2}$
	$=\frac{-i\pm 5i}{2}$
	$\therefore z = 2i$ or $z = -3i$
	$\Rightarrow w = 3i - (2i)i \qquad \qquad w = 3i - (-3i)i$
	=2+3i $=-3+3i$
	Method 2
	z - wi = 3
	$\Rightarrow \qquad z = 3 + wi \dots (1)$
	Substitute (1) into $z^2 - w + 6 + 3i = 0$
	$(3+wi)^2 - w + 6 + 3i = 0$
	$\Rightarrow 9+6wi-w^2-w+6+3i=0$
	$\Rightarrow -w^2 - (1-6i)w + 15 + 3i = 0$
	$\Rightarrow -w^2 - (1-6i)w + 15 + 3i = 0$
	$\Rightarrow \qquad w^2 + (1 - 6i)w - 15 - 3i = 0$
	$\Rightarrow w = \frac{-(1-6i) \pm \sqrt{(1-6i)^2 - 4(1)(-15 - 3i)}}{2}$

$$= \frac{-1+6i\pm\sqrt{1-12i-36+60+12i}}{2}$$

$$= \frac{-1+6i\pm\sqrt{25}}{2}$$

$$\therefore w=2+3i \quad \text{or} \quad w=-3+3i$$

$$\Rightarrow z=3+(2+3i)i=2i \quad z=3+(-3+3i)i=-3i$$

$$\frac{\text{Method 3}}{yi=z-3}$$

$$\Rightarrow w=-iz+3i$$

$$\therefore z^{2}-(-iz+3i)+6+3i=0$$

$$\Rightarrow z^{2}+iz+6=0$$

$$\text{Let } z=a+bi \text{ where } a, b \in \square$$

$$(a+bi)^{2}+i(a+bi)+6=0$$

$$\Rightarrow a^{2}-b^{2}-2b+6+(2ab+a)i=0$$

$$\text{By comparing the real and imaginary parts,}$$

$$a^{2}-b^{2}-b+6=0 \quad \dots (1)$$

$$2ab+a=0 \quad \dots (2)$$
From (2), $a=0 \text{ or } b=-\frac{1}{2}$
When $a=0, \ b^{2}+b-6=0$

$$(b-2)(b+3)=0$$

$$b=2 \text{ or } b=-3$$
Hence $z=2i, w=-i(2i)+3i=2+3i$
or $z=-3i, w=-i(-3i)+3i=-3+3i$
When $b=-\frac{1}{2}, \ a^{2}=\frac{1}{4}-\frac{1}{2}-6=-\frac{25}{4}$

	There is no real solution for <i>a</i> .
2(i)	$\frac{2}{n-1} - \frac{3}{n} + \frac{1}{n+1}$ $= \frac{2(n)(n+1) - 3(n-1)(n+1) + (n-1)(n)}{(n-1)(n)(n+1)}$ $= \frac{(2n^2 + 2n) - (3n^2 - 3) + (n^2 - n)}{n^3 - n}$ $= \frac{n+3}{n^3 - n}$
(ii)	$\sum_{r=2}^{n} \frac{2r+6}{r^3-r}$ $= 2\sum_{r=2}^{n} \frac{r+3}{r^3-r}$ $= 2\sum_{r=2}^{n} \left(\frac{2}{r-1} - \frac{3}{r} + \frac{1}{r+1}\right)$ $\begin{bmatrix} \frac{2}{1} - \frac{3}{2} + \frac{1}{r+1} \\ + \frac{2}{2} - \frac{3}{3} + \frac{1}{4} \\ + \frac{2}{3} - \frac{3}{4} + \frac{1}{5} \\ + \dots \\ + \frac{2}{n-1} - \frac{3}{n} + \frac{1}{n+1} \end{bmatrix}$ $= 2\left(\frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n} - \frac{3}{n} + \frac{1}{n+1}\right)$ $= 2\left(\frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n} - \frac{3}{n} + \frac{1}{n+1}\right)$ $= 2\left(\frac{3}{2} - \frac{2}{n} + \frac{1}{n+1}\right)$
(iii)	$\sum_{r=2}^{n} \frac{2r+10}{(r+1)(r+2)(r+3)}$ Let $r+2 = p \Longrightarrow r = p-2$

(ii)	NORMAL FLOAT AUTO REAL RADIAN MP
	$y = f^{-1}(x)$ $y = f^{-1}f(x)$ y = f(x) x = 0 x = 1 y = 0
(iii)	Since $ff^{-1}(x) = f^{-1}f(x) = x$ have the same rule, we investigate
	the domain
	$D_{f^{-1}f} = (1,\infty) \ D_{ff^{-1}} = (0,\infty)$
	Taking the intersection of these domains,
	Range of values is $x > 1$.
4 (i)	Equation of plane is
	$\mathbf{r} = \begin{pmatrix} 1\\3\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\0 \end{pmatrix} + \mu \begin{pmatrix} -2\\0\\1 \end{pmatrix}, \ \lambda, \mu \in \Box$
	A normal vector to plane is
	$ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \times \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ -4 \end{pmatrix} $
	Hence vector equation of the plane is

(ii)

$$\mathbf{r} \begin{bmatrix} 2\\1\\4 \end{bmatrix} = \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \begin{bmatrix} 2\\1\\4 \end{bmatrix}$$

$$\mathbf{r} \begin{bmatrix} 2\\1\\4 \end{bmatrix} = -3$$
(ii)

$$l_{AC}: \mathbf{r} = \begin{bmatrix} -5\\2\\2 \end{bmatrix} + s \begin{bmatrix} 2\\1\\4 \end{bmatrix}, s \in \mathbb{I}$$
Thus $\overline{OC} = \begin{bmatrix} -5\\2\\2 \end{bmatrix} + s \begin{bmatrix} 2\\1\\4 \end{bmatrix} \text{ for some } s \in \mathbb{I}$.
Since C lies on the plane:

$$\begin{bmatrix} \begin{bmatrix} -5\\2\\2 \end{bmatrix} + s \begin{bmatrix} 2\\1\\4 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2\\1\\4 \end{bmatrix} = -3$$

$$2(-5+2s)+(2+s)+4(2+4s) = -3$$

$$s = -\frac{3}{21}$$
Thus $\overline{OC} = \begin{bmatrix} 2\left(-\frac{3}{21}\right)-5\\\left(-\frac{3}{21}\right)+2\\4\left(-\frac{3}{21}\right)+2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -37\\13\\10 \end{bmatrix}$
(iii)
Using mid-point theorem
 $\overline{OA} = 2\overline{OC} - \overline{OA}$

$$= \frac{2}{7} \begin{bmatrix} -37\\13\\10 \end{bmatrix} - \begin{bmatrix} -5\\2\\2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -39\\12\\6 \end{bmatrix}$$
B is the point of intersection of l_1 and π .

	$\overrightarrow{BA'} = \overrightarrow{OA'} - \overrightarrow{OB}$
	$=\frac{1}{7} \begin{pmatrix} -39\\12\\6 \end{pmatrix} - \begin{pmatrix} 1\\3\\-2 \end{pmatrix}$
	$=\frac{1}{7}\begin{pmatrix}-46\\-9\\20\end{pmatrix}$
	$l_2: \mathbf{r} = \frac{1}{7} \begin{pmatrix} -39\\12\\6 \end{pmatrix} + t \begin{pmatrix} -46\\-9\\20 \end{pmatrix}, t \in \Box$ or
	$l_2: \mathbf{r} = \begin{pmatrix} 1\\3\\-2 \end{pmatrix} + t \begin{pmatrix} -46\\-9\\20 \end{pmatrix}, t \in \Box$
5(i)	The height of triangle ADG is $\frac{a}{\tan \theta} = \frac{a}{t}$.
	Hence $AH = 2a + \frac{a}{t} = a\left(2 + \frac{1}{t}\right).$
	$BH = BE + EH = 2a \tan \theta + a = a(2t+1)$
	Area $S = \frac{1}{2}(AH)(BC)$
	$S = \frac{a}{2} \left(2 + \frac{1}{t} \right) \left(2a(2t+1) \right)$
	(1)
	$S = a^2 \left(2 + \frac{1}{t}\right)(2t+1)$
	$S = a^{2} \left(2 + \frac{1}{t}\right)(2t+1)$ $S = a^{2} \left(4 + 4t + \frac{1}{t}\right)$
(ii)	$S = a^{2} \left(2 + \frac{1}{t}\right)(2t+1)$ $S = a^{2} \left(4 + 4t + \frac{1}{t}\right)$ $\frac{dS}{dt} = a^{2} \left(4 - \frac{1}{t^{2}}\right)$
(ii)	$S = a^{2} \left(2 + \frac{1}{t} \right) (2t+1)$ $S = a^{2} \left(4 + 4t + \frac{1}{t} \right)$ $\frac{dS}{dt} = a^{2} \left(4 - \frac{1}{t^{2}} \right)$ When $\frac{dS}{dt} = 0$,

]	No. of ways to sit the remaining friends at the table of 5
	= (5-1)! = 4! = 24
,	Total no. of ways = ${}^{9}C_{4} \times (5-1) \ge 2 \ge 4! = 145152$
]	No of ways to arrange 11 friends without restrictions
=	$= {}^{11}C_5 \times (5-1) \times (6-1)! = 1330560$
, t	Total no. of ways of arranging 11 people such that 2 particular friends are not seated together
=	= 1330560 - 120960 - 145152 = 1064448
]	Method 2
	<u>Alternative Method</u> Case 1: Two particular friends seated at table of 5
]	No of ways = ${}^{9}C_{3} \times 2! \times 3 \times 2 \times 5!$ = 120960
	${}^{9}C_{3}$: Selection of friends to be seated at table of 5. This automatically selects friends to be seated at table of 6.
	(3-1)!: Arranging the 3 other friends in table of 5.
	${}^{3}P_{2}$: Slotting in the 2 particular friends
-	5!: Arranging the 6 other friends in table of 6.
]	Case 2: Two particular friends seated at table of 6 No of ways = ${}^{9}C_{4} \times 4 \times 3 \times 4 \times 3$ = 217728
	${}^{9}C_{4}$: Selection of friends to be seated at table of 5. This automatically selects friends to be seated at table of 6.
	(5-1)!: Arranging the 5 friends in table of 5.
	4!: Arranging the 5 friends in table of 6.
	${}^{4}P_{2}$: Slotting in the 2 particular friends

	Case 3: Two particular friends seated at separate tables
	No of ways $= {}^9C \times 4 \times 5 \times 2$
	= 725760
	- 725766
	${}^{9}C_{4}$: Selection of friends to be seated at table of 5. This
	automatically selects friends to be seated at table of 6.
	(5-1)!: Arranging the 5 friends in table of 5.
	(6-1)!: Arranging the 6 friends in table of 6.
	x2: The 2 particular friends can switch tables
	Total no. of ways
	= 120960 + 217728 + 725760
7(:)	= 1064448
/(1)	Given $P(A B) = 0.83$
	$\rightarrow \frac{P(A \cap B')}{P(A \cap B')} = 0.83$
	\rightarrow P(B') = 0.05
	$\Rightarrow \frac{0.6}{0.6} = 0.83$
	1-P(B)
	$\Rightarrow P(B) = 1 - 0.72289 = 0.27711 = 0.277$
(ii)	Let $P(A \cap B) = x$
	$\begin{pmatrix} 0.6 \\ x \end{pmatrix} 0.27711-x$
	0 12280
	0.12209
	$P(A \cup B) = P(A \cap B') + P(B)$
	= 0.6 + x + 0.27711 - x
	= 0.8 / / 11 $P(A + B)' = 1 - 0.87711 - 0.12289$
	$1(1 \cup D) = 1 0.07711 = 0.12207$
	Since $P(A \cup B') = 0.83$
	$\therefore 0.6 + x + 0.12289 = 0.83$
	$\Rightarrow x = 0.10711$

	$\therefore \mathbf{P}(A \cap B)$) = 0.107.				
(iii)	$P(B A') =$ $= \frac{0.27}{1 - (0)}$ $= \frac{0.1}{0.29}$ $= 0.58$ $= 0.58$ Since P(B) ∴ A and B	$\frac{P(B \cap A')}{P(A')}$ $\frac{711 - 0.107}{0.6 + 0.1071}$ $\frac{17}{289}$ $\frac{14}{0}$ $A') \neq P(B)$ are not indefined	$\frac{11}{1}$ $B \Rightarrow B \text{ is n}$ $B \Rightarrow B \text{ pendent.}$	ot independ	lent of A'	
8 (i)	P(Linda sco	ores 30 poir	$hts) = P(\{h$	it, hit, hit})		
			$= 0.6^3$			
			$=\frac{27}{125}$	(0.216)		
(ii)	Let X be the	e number of	f points sco	ored by Lind	la in a round	1.
	X	0	10	20	30	
	P(X=x)	0.4	0.6×0.4	0.6 ² ×0.4	0.216	
			=0.24	=0.144		
(iii)	$E(X) = 0 \times 0$ $= 11.76$ $E(X^{2}) = 0^{2} \times$ $= 276$ $Var(X) = E$ $= 2$	$(X^2) - [E(X)]$	$\frac{1}{24 + 20 \times 0.1}$ $0.24 + 20^{2} \times 0.1$ $0.24 = 137 \ 702$	$\frac{1}{44 + 30 \times 0.2}$	216 2×0.216	
(•)	=2	/0 - 11./62	r = 13/./02	4	de la D	1 1
(IV)	Let X_1 be the and let X_2 be 2.	the number of th	or points sco er of points	s scored by Lin	da in Round Linda in Ro	1 I ound

	P(Linda scores more in round 2 than in round 1)		
	$= P(X_1 = 0 \& X_2 \ge 10)$		
	$+P(X_1 = 10 \& X_2 \ge 20)$		
	$+P(X_1 = 20 \& X_2 = 30)$		
	$= P(X_1 = 0)P(X_2 \ge 10)$		
	$+P(X_1 = 10)P(X_2 \ge 20)$		
	$+P(X_1 = 20)P(X_2 = 30)$		
	$= 0.4 \times (1 - 0.4)$		
	$+0.24 \times (0.144 + 0.216) + 0.144 \times 0.216$		
	= 0.357504 = 0.358 (3 s.f.)		
9 (i)			
	NORMAL FLOAT AUTO REAL RADIAN MP 🛛 💿 🔲		
	Y		
	56 345		
(ii) (a)	Product moment correlation coefficient, $r = 0.9996$		
(b)	Product moment correlation coefficient $r = 0.9514$		
(0)			
(iii)	From the scatter diagram, as <i>x</i> increases, the value of <i>y</i>		
	increases at a decreasing rate that seems to fit model (a)		
	better. Also, the value of $ r $ for model (a) is closer to 1 as		
	compared to model (b).		
(iv)	We use the regression line y on $\ln x$		
(1)			
	$y = 6.1619(\ln x) - 17.223 \approx 6.16 \ln x - 17.2$		
	When $r = 210$		
	$\frac{1}{2}$		
	$y = 6.1619(\ln 210) - 17.223 = 15.725 \approx 15.7$		

	As the value of $ r $ is close to 1 and $x = 210$ is within the
	given data range, the estimation may be reliable.
10 (i)	Let <i>S</i> be the random variable "radius of a small table in cm".
	Let L be the random variable "radius of a large table in cm".
	$S \sim N(30, 2^2)$
	$L \sim N(50, 5^2)$
	$S_1 + S_2 + S_3 + S_4 + S_5 \sim N(5 \times 30, 5 \times 2^2)$
	$S_1 + S_2 + S_3 + S_4 + S_5 \sim N(150, 20)$
	$P(S_1 + S_2 + S_3 + S_4 + S_5 < 160) = 0.98733 \approx 0.987$
(ii)	$S_1 + S_2 + S_3 - 2L \sim N(3 \times 30 - 2 \times 50, \ 3 \times 2^2 + 2^2 \times 5^2)$
	$S_1 + S_2 + S_3 - 2L \sim N(-10, 112)$
	$P(S_1 + S_2 + S_3 < 2L) = P(S_1 + S_2 + S_3 - 2L < 0) = 0.82765 \approx 0.828$
(iii)	The radii of the large and small round tables are independent of one another.
(iv)	Let X be the random variable "number of large tables, out of
	12, with radius less than 40 cm".
	$X \sim B(12, P(L < 40))$
	$X \sim B(12, 0.022750)$
	$P(X \ge 2) = 1 - P(X \le 1)$
	=1-0.97064
	= 0.029357
	≈ 0.0294
(v)	Let <i>Y</i> be the random variable "radius of a medium sized table in cm"

P(Y ≥ 44) = 0.20
P(Y < 44) = 0.80
P(Z <
$$\frac{44 - \mu}{\sigma}$$
) = 0.80
 $\frac{44 - \mu}{\sigma}$ = 0.84162
 μ = 44 - 0.84162 σ -----(1)
P(Y < 40) = 0.30
P(Z < $\frac{40 - \mu}{\sigma}$) = 0.30
 $\frac{40 - \mu}{\sigma}$ = -0.52440
 μ = 40 + 0.52440 σ -----(2)
Solving (1) and (2),
44 - 0.84162 σ = 40 + 0.5244 σ
4 = 1.3660 σ
 σ = 2.9283 ≈ 2.93
 μ = 41.535 ≈ 41.5
11 (i) Unbiased estimate of population mean,
 $\bar{x} = \frac{24730}{50} = 494.60$
Unbiased estimate for population variance,
 $s^2 = \frac{1}{49} (12242631 - \frac{24730^2}{50}) = 228.02$
Let X be the volume of beer in one beer can in ml and μ be the population mean volume of beer of the beer cans.
 $H_0: \mu = 500$
 $H_1: \mu < 500$
Under H_0 , since $n = 50$ is large, by the Central Limit Theorem,

	$\overline{X} \sim N\left(500, \frac{s^2}{50}\right)$ approximately.		
	Use a left-tailed z-test at the 1% level of significance.		
	Test statistic: $Z = \frac{\overline{X} - 500}{\frac{s}{\sqrt{50}}} \sim N(0,1)$.		
	Reject H_0 if <i>p</i> -value ≤ 0.01 .		
	From the sample,		
	p - value = 0.0057248 = 0.00572		
	Since <i>p</i> -value = $0.00572 \le 0.01$, we reject H_0 . There is		
	sufficient evidence at the 1% level of significance to conclude that the volume of cola in a can is less than 500 ml.		
(ii)	As we are using a two tailed test instead of a one tailed test, p -value = 2 (0.00572) = 0.01144.		
	Hence we do not reject H_0 . There is insufficient evidence at		
	the 1% level of significance to conclude that the volume of cola in a can is not 500 ml.		
(iii)	Let <i>X</i> be the volume of cola in one can in ml and μ be the population mean volume of cola of the cans.		
	$H_0: \mu = 500$		
	$H_1: \mu \neq 500$		
	Unbiased estimate of population variance,		
	$s^2 = \frac{40}{39} (s_x)^2$		
	Under H_0 , since $n = 40$ is large, by the Central Limit		
	Theorem,		
	$\overline{X} \sim N\left(500, \frac{s_x^2}{39}\right)$ approximately.		
	Use a two-tailed z-test at the 1% level of significance.		

	Test statistic: $Z = \frac{\overline{X} - 500}{\frac{s_x}{\sqrt{39}}} \sim N(0,1)$
	Critical values: $z_{crit(1)} = -2.5758$ $z_{crit(2)} = 2.5758$.
	Reject H_0 if
	$z_{cal} \leq -2.5758$ or $z_{cal} \geq 2.5758$.
	Since H_0 is rejected,
	$-2.5758 \le z_{cal}$ or $z_{cal} \ge 2.5758$
	$-2.5758 \le \frac{\overline{x} - 500}{\sqrt{\frac{s_x^2}{39}}}$ or $\frac{\overline{x} - 500}{\sqrt{\frac{s_x^2}{39}}} \ge 2.5758$
	$500 - 2.5758 \sqrt{\frac{s_x^2}{39}} \le \overline{x}$ or $\overline{x} \ge 500 + 2.5758 \sqrt{\frac{s_x^2}{39}}$
	$500 - 0.41246s_x \le \overline{x}$ or $\overline{x} \ge 500 + 0.41246s_x$
	$500 - 0.412s_x \le \bar{x}$ or $\bar{x} \ge 500 + 0.412s_x$
	Hence the decision rule should read:
	Conclude that the volume of cola differs from 500 ml if the value of \overline{x} lies within this range :
	$500-0.412s_x \le \overline{x}$ or $\overline{x} \ge 500+0.412s_x$.
(iv)	Let <i>X</i> be the volume of cola in one can in ml.
	since n is large, by the Central Limit Theorem,
	$X_1 + X_2 + + X_n \sim N(500n, 144n)$ approximately.
	Let <i>Y</i> be the volume of grape juice in one packet in ml.
	since $2n$ is large, by the Central Limit Theorem,
	$Y_1 + Y_2 + \dots + Y_{2n} \sim N(500n, 50n)$ approximately.
	$X_1 + X_2 + \dots + X_n + Y_1 + Y_2 + \dots + Y_{2n} \sim N(1000n, 194n)$

$$P(X_1 + X_2 + \dots + X_n + Y_1 + Y_2 + \dots + Y_{2n} \le 120,000) \ge 0.95$$

$$P\left(Z \le \frac{120,000 - 1000n}{\sqrt{194n}}\right) \ge 0.95$$

$$\frac{120,000 - 1000n}{\sqrt{194n}} \ge 1.6449$$

$$120,000 - 1000n \ge 1.6449\sqrt{194n}$$

$$1000n + 22.9\sqrt{n} - 120,000 \le 0$$