

H2 Mathematics (9758) Chapter 4 Equations and Inequalities Discussion Solutions

Level 1 Questions

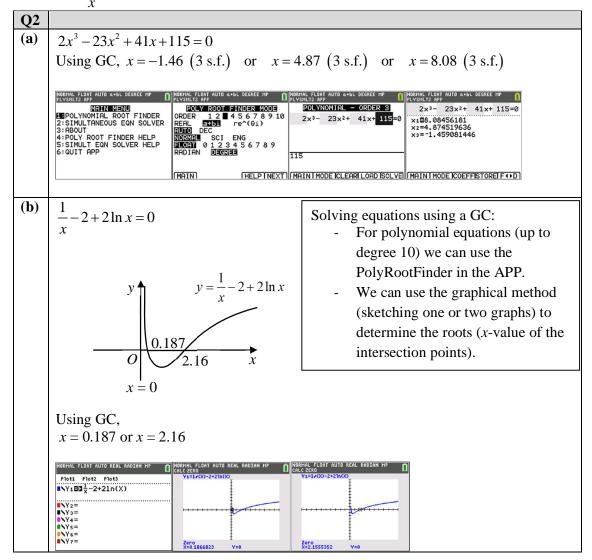
1 Solve the equation $21x^2 - 11x - 2 = 0$ algebraically.

Q1		
	$21x^{2} - 11x - 2 = 0$ (7x+1)(3x-2) = 0 $x = -\frac{1}{7} \text{or} x = \frac{2}{3}$	 3 methods to solve quadratic equations algebraically: 1) Factorisation (shown in solution) 2) Complete the square (try on your own) 3) Quadratic Formula (try on your won)

2 Using a graphing calculator, solve the following equations

(a)
$$2x^3 - 23x^2 + 41x + 115 = 0$$
,

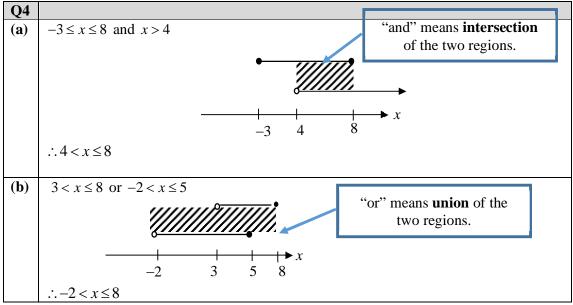
(b)
$$\frac{1}{x} - 2 + 2 \ln x = 0$$
.



- **3** Solve the system of linear equations:

3									
	x_1	+	<i>x</i> ₂	+	<i>x</i> ₃	+	x_4	=	10
	x_1	+	x_2	—	<i>x</i> ₃	—	x_4	=	4
	x_1	-	x_2	+	<i>x</i> ₃	_	x_4	=	2
	x_1	_	x_2	_	<i>x</i> ₃	+	X_4	=	0
			DAT FRI	AC REA	L DEGR	EE C <u>L</u>	ſ	NORM	MAL FLOAT FRAC REAL DEGREE CL
	PLYS	YST				× 5	.0		IMAL FLOAT FRAC REAL DEGREE CL
		YST	APP <u> <u> </u> </u>	1 1 -1 1	X (4		.0		SOLUTION 184 2=3

- 4 By drawing number lines, simplify the following ranges of values of *x*:
 - (a) $-3 \le x \le 8 \text{ and } x > 4$,
 - **(b)** $3 < x \le 8 \text{ or } -2 < x \le 5$.



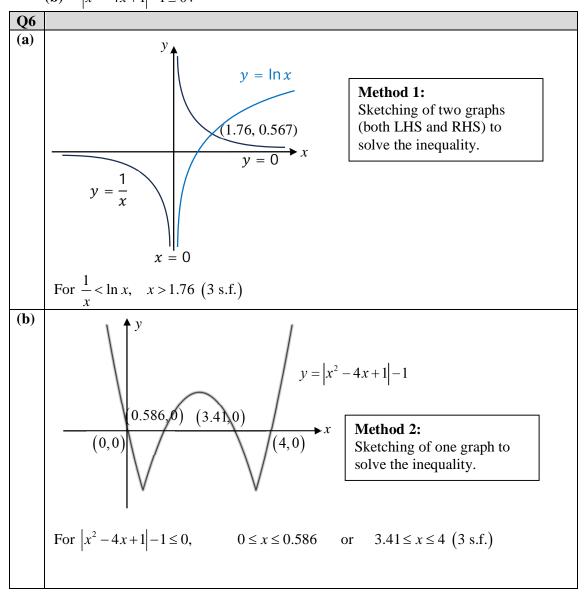
- 5 Without the use of a calculator, solve the following inequalities
 - $(a) \qquad 2x \ge 5 + 4x,$
 - **(b)** $9x^2 6x 8 > 0$,
 - (c) |x+2| < 7,
 - (d) |2x-1| > 3.

Q5			
(a)	$2x \ge 5 + 4x$		
	$-2x \ge 5$		
	$x \leq -\frac{5}{2}$		
(b)	$9x^2 - 6x - 8$		
	(3x+2)(3x-4))>0	
	$x < -\frac{2}{3}$	or	$x > \frac{4}{3}$
(c)	x+2 < 7		
	-7 < x + 2 < 7		
	-9 < x < 5		
(d)	2x-1 > 3		
	2x - 1 < -3	or	2x - 1 > 3
	2x < -2	or	2x > 4
	x < -1	or	<i>x</i> > 2

6 By sketching appropriate graphs, solve the following inequalities

$$(\mathbf{a}) \quad \frac{1}{x} < \ln x \,,$$

(b)
$$|x^2 - 4x + 1| - 1 \le 0$$



Level 2 Questions

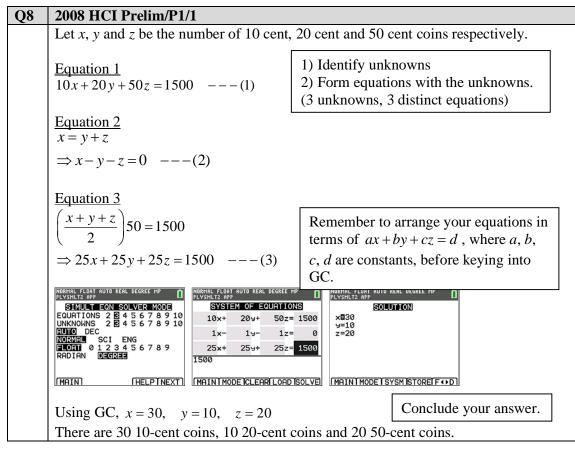
7 A VCR manufacturing company produces three models: model *A*, model *B* and model *C*. The time taken for the production, assembly and testing of each model is given in the table below. To minimize costs, the company decides that 385 hours should be allocated for production, 557 hours for assembly, and 128 hours for testing. How many of each model can the company produce if it wants to use up all the allocated time for each phase of the process?

Model	Production time in hrs	Assembly time in hrs	Testing time in hrs
A	1.8	3.0	0.5
В	2.2	3.2	0.8
С	3.0	3.5	1.0

Q7		
	Let <i>a</i> , <i>b</i> , and <i>c</i> represents the number of	f VCRs models A, B, and C respectively.
		 Identify unknowns Form equations with the unknowns. unknowns, 3 distinct equations)
	1.8a + 2.2b + 3.0c = 385	no. of hrs for production
	3.0a + 3.2b + 3.5c = 557 0.5a + 0.8b + 1.0c = 128	no. of hrs for assembly no. of hrs for testing
	Using GC, <i>a</i> = 60, <i>b</i> = 85, <i>c</i> = 30.	
	The company has to produce 60 of mod	lel A, 85 of model B and 30 of model C.

8 2008/HCI prelim/I/1

A student has been saving 10 cent, 20 cent and 50 cent coins in a moneybox. When she opened the box after one month, she found the amount saved is \$15 and the number of 10 cent coins equals the total number of 20 cent and 50 cent coins. She also found that only half as many coins is needed to save the same amount using just 50 cent coins. Find the number of 10 cent, 20 cent and 50 cent coins in the moneybox. [4]



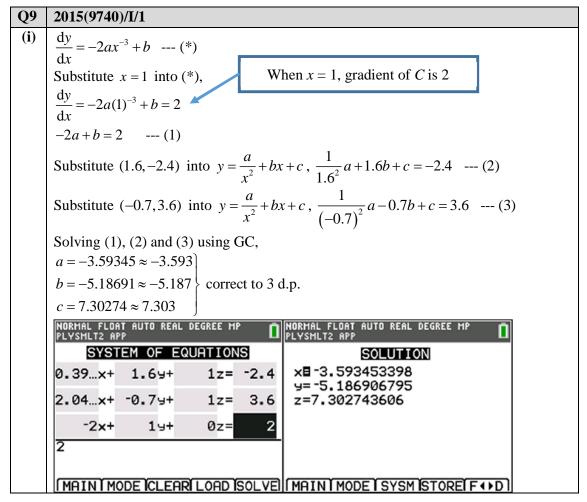
9 2015(9740)/I/1

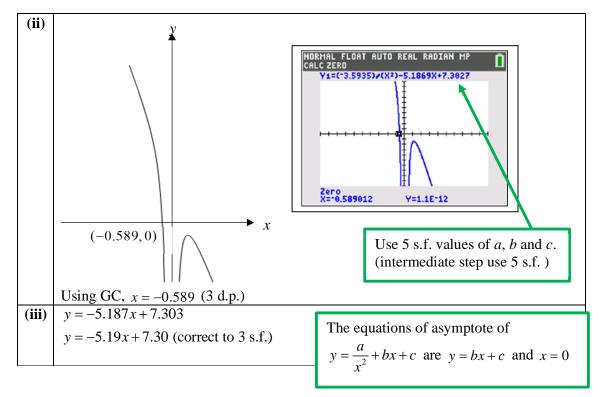
A curve C has equation

$$y = \frac{a}{x^2} + bx + c$$

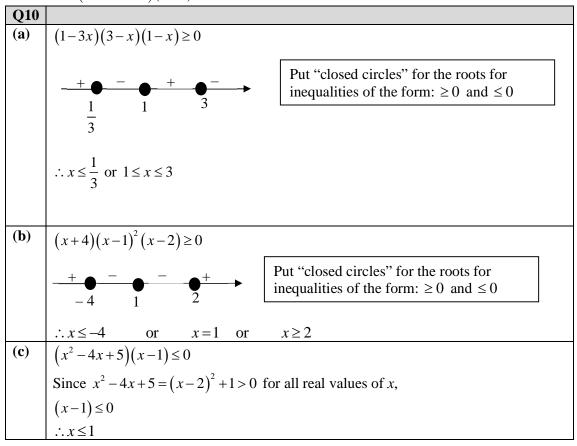
where *a*, *b* and *c* are constants. It is given that *C* passes through the points with coordinates (1.6, -2.4) and (-0.7, 3.6), and that the gradient of *C* is 2 at the point where x = 1.

- (i) Find the values of *a*, *b* and *c*, giving your answers correct to 3 decimal places. [4]
- (ii) Find the *x*-coordinate of the point where *C* crosses the *x*-axis, giving your answer correct to 3 decimal places. [2]
- (iii) One asymptote of *C* is the line with equation x = 0. Write down the equation of the other asymptote of *C*. [1]





- (a) $(1-3x)(3-x)(1-x) \ge 0$,
- **(b)** $(x+4)(x-1)^2(x-2) \ge 0$,
- (c) $(x^2 4x + 5)(x 1) \le 0$.



11 Solve the following inequalities algebraically

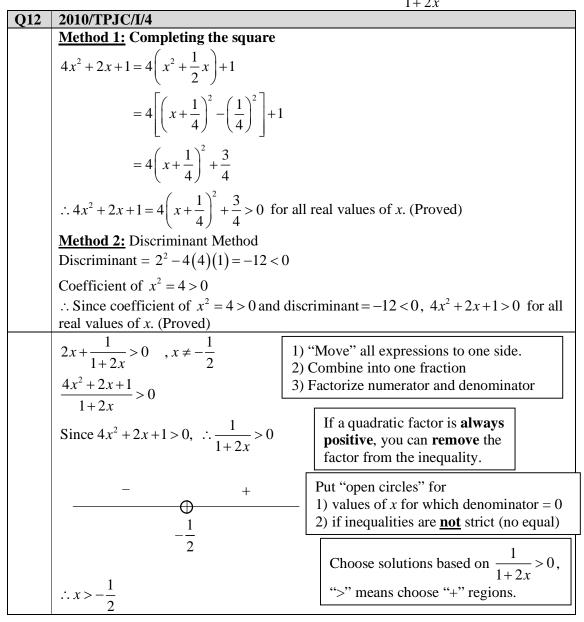
((a) $\frac{x-1}{3x+4} < 0$,
((b) $x+2 \le \frac{30}{x+1}$.
Q11 (a)	$x-1$ $3x+4 < 0, x \neq -\frac{4}{3}$ Put "closed circles" for the roots for inequalities of the form: ≥ 0 and ≤ 0 For this question, there are no "closed
	$-\frac{+}{-\frac{4}{3}}$
	$-\frac{1}{3}$ 1 Put "open circles" to exclude values of x where the denominator equals to 0.
	$\therefore -\frac{4}{3} < x < 1$
(b)	$x+2 \le \frac{30}{x+1}, \qquad x \ne -1$
	$x + 2 - \frac{30}{x+1} \le 0$
	$\frac{(x+2)(x+1)-30}{x+1} \le 0$ Combine into one fraction
	$\frac{x^2 + 3x - 28}{x + 1} \le 0$ Simplify/ factorise /completing the square
	$\frac{(x+7)(x-4)}{x+1} \le 0$ Put "closed circles" for the roots for
	inequalities of the form: ≥ 0 and ≤ 0
	7 + - 1 + + + + + + + + + + + + + + + + +
	Put "open circles" to exclude values of x where the denominator equals to 0.
	Hence $\frac{(x+7)(x-4)}{x+1} \le 0 \Leftrightarrow x \le -7 \text{or} -1 < x \le 4.$

12 2010/TPJC/I/4

Given that x is real, prove that $4x^2 + 2x + 1$ is always positive.

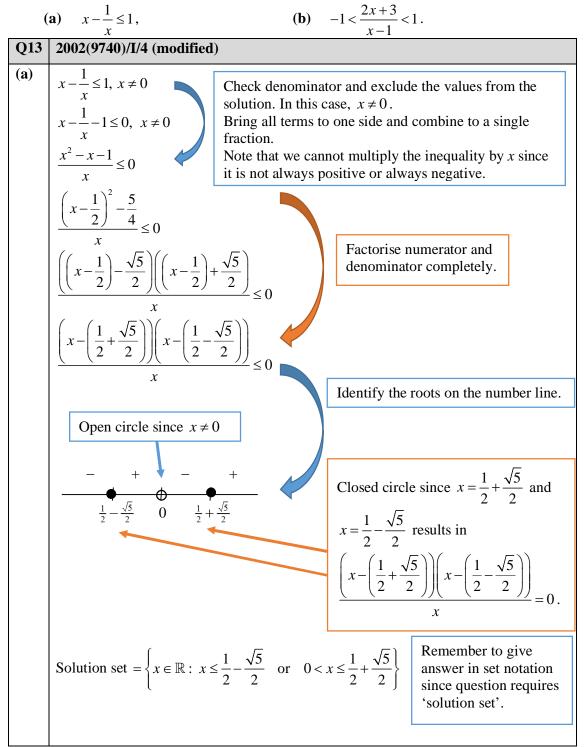
Hence, without using a calculator, solve the inequality $2x + \frac{1}{1+2x} > 0$.

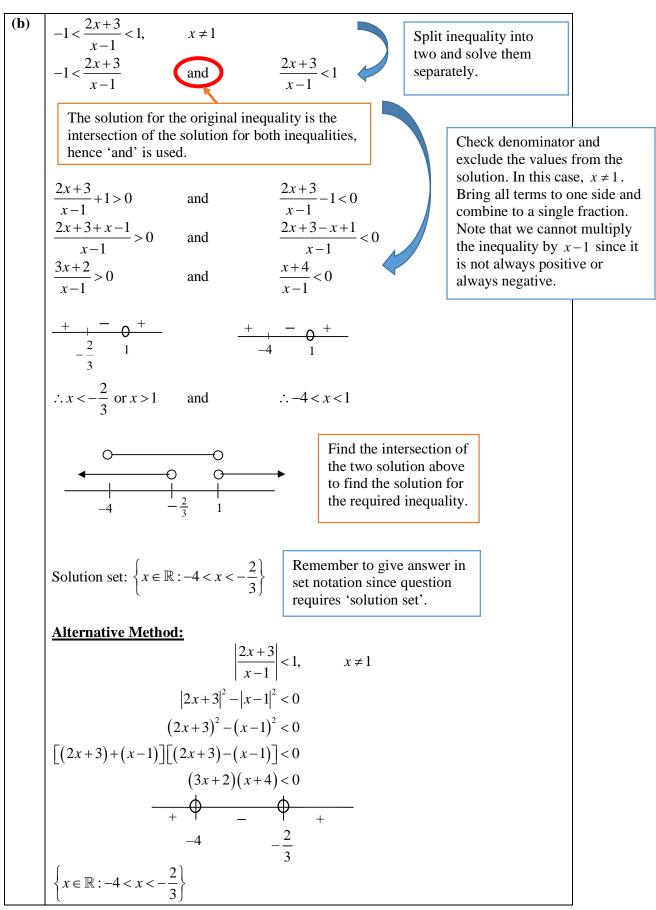
[4]



13 2002(9740)/I/4 (modified)

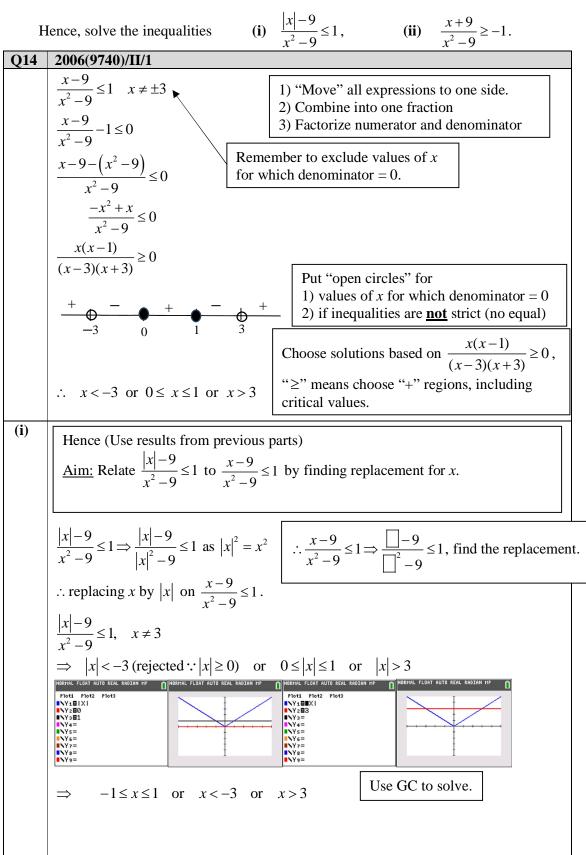
Without using a calculator, find the solution set of the following inequalities.

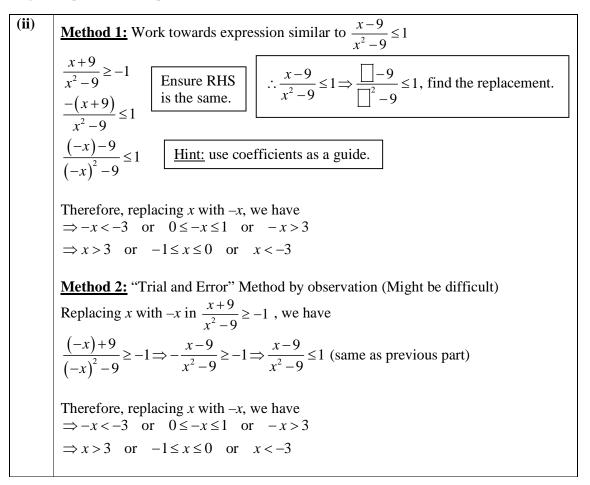




14 2006(9740)/II/1

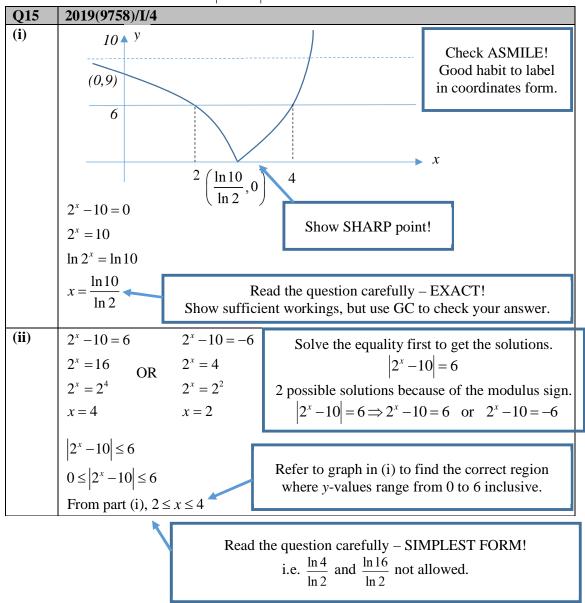
Solve the inequality $\frac{x-9}{x^2-9} \le 1$.





15 2019(9758)/I/4

- (i) Sketch the graph of $y = |2^x 10|$, giving the exact values of any points where the curve meets the axes. [3]
- (ii) Without using a calculator, and showing all your working, find the exact interval, or intervals, for which $|2^x 10| \le 6$. Give your answer in its simplest form. [3]



16 2018(9758)/I/4

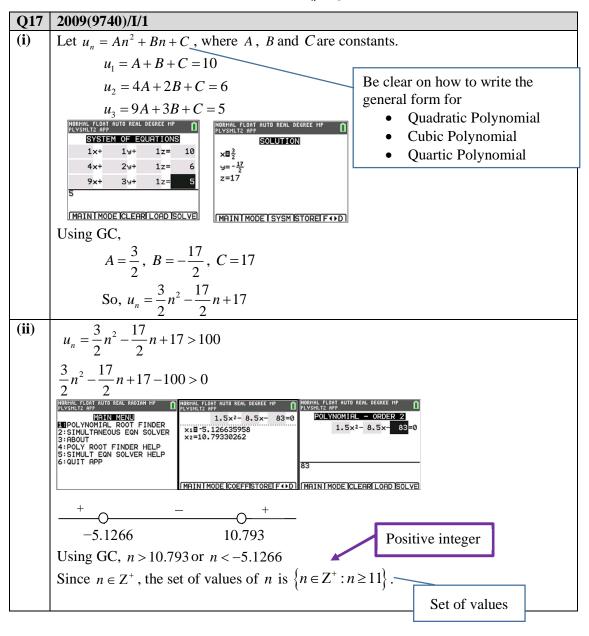
- (i) Find the exact roots of the equation $|2x^2 + 3x 2| = 2 x$. [4]
- (ii) On the same axes, sketch the curves with equations $y = |2x^2 + 3x 2|$ and

	y = 2 - x.	
	Hence solve exactly the inequality	
	$ 2x^2 + 3x - 2 < 2 - x$	[4]
Q16	2018(9758)/I/4	x = a
(i)	$\left 2x^2+3x-2\right =2-x$	\Rightarrow $x = a$ or $x = -a$
	$2x^2 + 3x - 2 = 2 - x$ or 2.	$x^2 + 3x - 2 = -(2 - x)$
	$2x^2 + 4x - 4 = 0$ or 2	$x^2 + 2x = 0$
	$x^2 + 2x - 2 = 0 \qquad \text{or} \qquad x$	$x^{2} + x = 0$ Exact roots (No GC)
	$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-2)}}{2(1)} \text{or} x$	(x+1) = 0
	$x = -1 \pm \sqrt{3}$ or x	= 0 or x = -1
	\therefore The roots are $-1-\sqrt{3}$, -1 , 0 and -1	$+\sqrt{3}$.
(ii)	$(-\frac{3}{4},\frac{25}{8})$	$y = 2x^{2} + 3x - 2 $ $y = 2 - x$ x $y = 2 - x$
	From the graph, $-1 - \sqrt{3} < x < -1$ or $0 < x < -1 + \sqrt{3}$.	To solve $ 2x^2 + 3x - 2 < 2 - x$, We need to find the values of x such that the graph of $y = 2x^2 + 3x - 2 $ is "below (<)" the graph of $y = 2 - x$.

Level 3 Questions

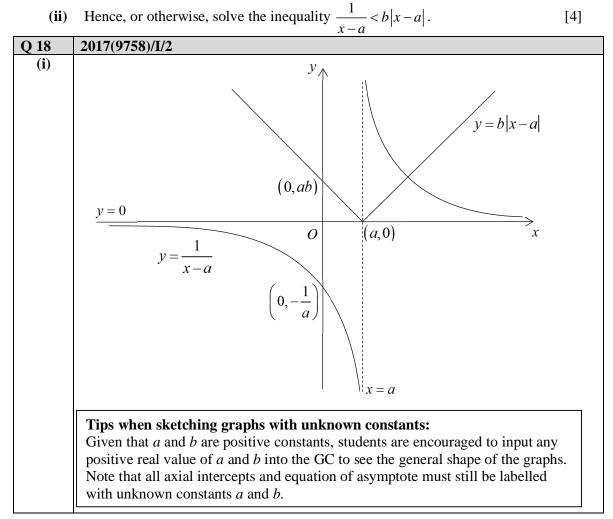
17 2009(9740)/I/1

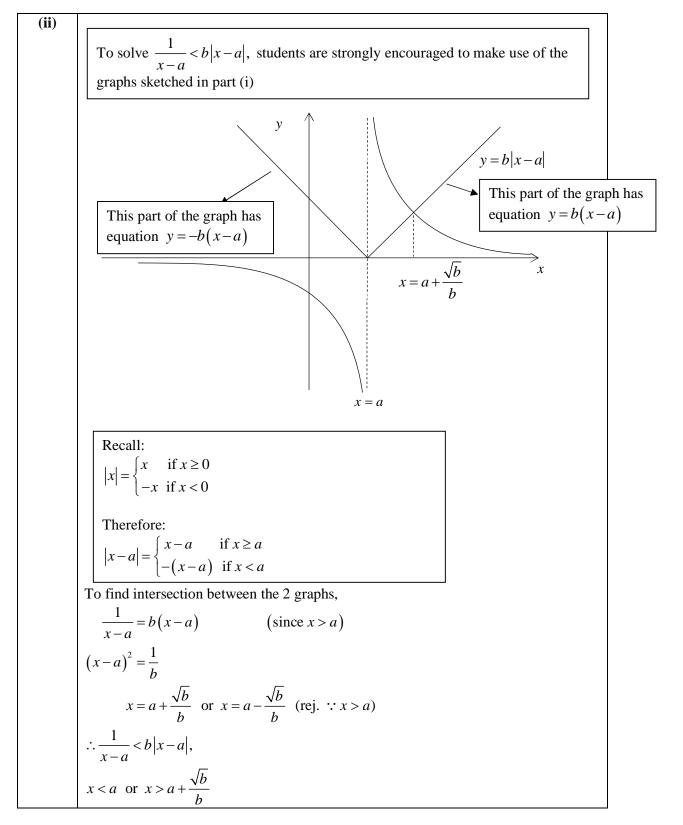
- (i) The first three terms of a sequence are given by $u_1 = 10$, $u_2 = 6$, $u_3 = 5$. Given that u_n is a quadratic polynomial in *n*, find u_n in terms of *n*. [4]
- (ii) Find the set of values of *n* for which u_n is greater than 100.



18 2017(9758)/I/2

(i) On the same axes, sketch the graphs of $y = \frac{1}{x-a}$ and y = b|x-a|, where *a* and *b* are positive constants. [2]





19 2018/AJC Promo/Q1

A dietitian wishes to plan a meal using three types of ingredients. The meal is to include 8800 microgram (μ g) of vitamin *A*, 3380 μ g of vitamin *C* and 1020 μ g of calcium. The amount of the vitamins and calcium in each unit of the ingredients is summarised in the following table:

	Ingredient I	Ingredient II	Ingredient III
Vitamin A	400	1200	800
Vitamin C	110	570	340
Calcium	90	30	60

Assuming that all the 3 ingredients were used, find the three possible combinations of the number of integer units of each ingredient the dietitian should include in the meal in order to meet the vitamins and calcium requirements. [5]

Q19	2018/AJC Promo/Q1			
	Let <i>x</i> , <i>y</i> and <i>z</i> be the number of units of Ingredients I, II and III used per meal, respectively.			
	$\begin{array}{r} 400 \ x + 1200 \ y + 800 \ z = 8800 \(1) \\ 110 \ x + 570 \ y + 340 \ z = 3380 \(2) \\ 90 \ x + 30 \ y + 60 \ z = 1020 \(3) \end{array} \qquad \begin{array}{r} 1) \ \text{Identify unknowns} \\ 2) \ \text{Form equations with the unknowns.} \\ (3 \ \text{unknowns, 3 distinct equations}) \end{array}$			
	From G.C., $x = 10 - \frac{1}{2}z$ $y = 4 - \frac{1}{2}z$ Since x, y, z are positive integers, $x = 10 - \frac{1}{2}z > 0 \Rightarrow z < 20 \text{ and } y = 4 - \frac{1}{2}z > 0 \Rightarrow z < 8$ Since z < 20 and z < 8, this means that z < 8.			
	Since x, y, z are positive integers , and z must be a multiple of 2 and at the same time less than 8. $\therefore z = 2, 4 \text{ or } 6$ When $z = 2, x = 9, y = 3$. When $z = 4, x = 8, y = 2$. When $z = 6, x = 7, y = 1$.			