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1 Let a, b, c, d, e and f   be positive integers such that the sum S a b c d e f= + + + + +  divides 

both  

 

abc def+   and  ab bc ca de ef fd+ + − − − . 

  

 By considering the polynomial ( ) ( )( )( ) ( )( )( )p ,x x a x b x c x d x e x f= + + + − − − − or 

otherwise, prove that S is composite.  [6] 

 

 

2  (a) Determine the number of solutions to the equation 

 

  1 2 3 28x x x+ + =  

 

  where 1x , 2x  and 3x  are non-negative integers. [1] 

 

 (b) Determine the number of solutions to the equation 

 

  1 2 3 28x x x+ + =  

 

  where 1x , 2x  and 3x  are non-negative integers and 1 12.x   [2] 

 

 (c) Determine the number of solutions to the equation 

 

   1 2 3 28x x x+ + =  

 

  where 1x , 2x  and 3x  are non-negative integers less than 12. [2] 

 

 (d) Let n, k and r be positive integers such that ( )1 .k r n−   

 

  By considering the number of solutions to the equation 

 

  1 2 kx x x n+ + + =  

 

  where 1 2, , , kx x x  are non-negative integers less than r, and using the Principle of 

Inclusion and Exclusion, evaluate 

 

   ( )
0

1
1

1

n

r
m

m

k n mr k

m k

 
 
 

=

− + −  
−   

−  
 . [6] 
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3 (i) Express 
4

1

1u +
 in the form 

2 21 1

Au B Au B

u Cu u Cu

+ −
−

+ + − +
, where A, B and C are positive 

constants to be determined.  [5] 

 

 (ii) By substituting 2 tanu x= , or otherwise, evaluate 
1

d .
tan

x
x





 [6] 

  

 

4 (a) A sequence of terms is defined by 
( )

2

.
2 1 !

n

n
x

n
=

−
 

 

(i) Prove that for all positive integers n, 1 2
.

3

n

n

x

x

+    [2] 

 

(ii) Show that 
1

n

n

x


=

  converges.  [3] 

 

A defining property of any convergent sequence of terms 
1 2 3, , , , ,nu u u u  with 

limit L is as follows: 

 

For any positive number k, we can always find a sufficiently large integer N such that 

 

 nu L k−   for all .n N  

 

In other words, the values of the terms 1 2 3, , ,N N Nu u u+ + +  are all bounded in the 

interval ( ), .L k L k− +  

 

(iii) Prove that if a sequence of positive terms 1 2 3, , , , ,nv v v v  is such that 

1lim n

n
n

v

v

+

→
 exists and the limit l is less than 1, then 

1

n

n

v


=

  converges. [4] 

 

(b) Find exactly the value of 
( )1

1 1 1 1
1 .

2 1 ! 3! 5! 7!n n



=

= + + + +
−

  [3] 
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5 (i) Show that if 1m+  integers are chosen from the set  1,2,3,..., 2m , then there exist two 

integers among the chosen integers that satisfy the property that 

 

  (a) they are coprime,  [2] 

 

  (b) one divides the other.  [3] 

 

It is also given that if 2m +  integers are chosen from the set  1,2,3,..., 2 1m+ , then there 

exist two integers among the chosen integers that satisfy the property that one divides the 

other. 

  

 For integers p and q with 0q  , the fraction 
p

q
 is said to be irreducible if ( )gcd , 1p q = . 

 Let I denote an open interval of length 
1

n
 on the real line, where n is a positive integer. 

 (ii) Show that if 
a

b
 is an irreducible fraction in I with 1 ,b n   then I does not contain 

any other irreducible fraction with denominator kb such that 1 kb n   where k .

   [3] 

 

 (iii) Hence, show that I contains at most 
1

2

n+
 irreducible fractions with denominator 

between 1 and n inclusive.  [3] 

 

 (iv) If the interval I was a closed interval instead of an open interval, would the result in 

part (iii) still hold? Justify your answer.                                                                     [2] 
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6 Let ( )f x  be a polynomial of degree 4 with constant real coefficients. 

 

 (i) Show that an appropriate sequence of translations and scalings can transform the graph 

of ( )fy x=  into the graph of ( )g ,y x=  such that ( ) 4 2g ,x x px qx= + +  where p and 

q are constants. [3] 

 

 (ii) Show that if the graph of ( )gy x=  has two points of inflexion, then p is negative. [2] 

 

 Suppose that p is negative. Let A and B be the points of inflection of ( )gy x= , with the 

positive and negative x-coordinates respectively. 

 

 (iii) Find the equation of the line  that passes through A and B. [3] 

 

 (iv) Show that  intersects the graph of ( )gy x=  in two more points, C and D, such that 

the order of points along  is DBAC.  [3] 

 

 (v) Show that 
1 5

.
2

BA BA

DB AC

+
= =  [3] 
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7 A network of roads consists of points with non-negative integer coordinates ( ),i j  where 

.i j  From the point ( ), ,i j  a person can travel only to the points ( )1,i j+  and ( ), 1 ,i j +  if 

they exist in the network. Part of the network is shown below. 

 

 
 

 A person starts at ( )0,0 .  Let ,i ja  be the number of ways a person can travel from ( )0,0  to 

( ), ,i j  where i and j are non-negative integers and .i j  For all other values of i and j, let 

,i ja  be 0. 

 

 (i) Explain why 

 

  (a) ,0 1ia =  if i is a non-negative integer ; [1] 

 

  (b) , 1, , 1i j i j i ja a a− −= +  if 0.i j   [2] 

 

 [continued on next page] 
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 The outline of a variation of mathematical induction involving two variables used to prove 

statements of the form ,Pi j  for all non-negative integers i and j, where ,i j  is as follows: 

 

• Prove that ,0Pi  is true for all non-negative integers i. 

• Prove that if ,q rP  is true for some non-negative integer r and all integers q where ,q r  

then , 1q rP +  is true for all integers q where 1q r +  by doing the following: 

• Prove that 1, 1r rP + +  is true. 

• Prove that if , 1r k rP + +  is true for some positive integer k, then 1, 1r k rP + + +  is true. 

  

 (ii) Use the principle of mathematical induction to prove that 

 

    ,

1

1
i j

i ji j
a

ii

+ − +
=  

+  
 

 

  for all non-negative integers i and j where .i j  [7] 

  

 (iii) Show that 

 

  (a) ,
1

i j

i j i j
a

i i

+ +   
= −   

+   
 for 1i j  ; [2] 

 

  (b) 2 ,

0

2n

n r r

r

n
a

n
−

=

 
=  
 

 . [2] 
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8 (i) Let ,g n . The integer d  is called the order of g  modulo n  if d  is the smallest 

  positive integer such that ( )1 moddg n .  

  Find the 

  (a) order of 3 modulo 4,  [1] 

  (b) order of 2 modulo 5.         [1] 

  (ii)  Fermat's Little Theorem states that:  

  If p  is a prime number and a  is an integer such that ( )gcd , 1a p = , then 

( )1 1 modpa p−  . 

Let  11,2 ,,pg S p= − . By using Fermat's Little Theorem or otherwise, prove that 

if p  is a prime number, the order of g  modulo p  divides 1.p −          [4] 

 (iii) Let p  be a prime number. The number g  is called a primitive root modulo p  if for 

any 1 1,k p  −  there exists a natural number n  such that ( ) mod .ng k p  

  (a) Verify that  

   A. 2 is a primitive root modulo 11,  [2] 

   B. 2 is a primitive root modulo 13.        [2] 

  (b) Let 2 1.g p  −  Show that the set  2 1, , , pg g g −   consists of distinct 

elements modulo p.  [4] 

  (c) Let p  be a prime such that ( )
1

1
2

q p= − is also a prime. Suppose that g  is an 

integer that is coprime to p  satisfying 

              ( )1 modg p   and ( )1 modqg p . 

     Prove that g  is a primitive root modulo p .        [5] 

 

 

 


