2020 SNGS Sec 4 OP Prelim

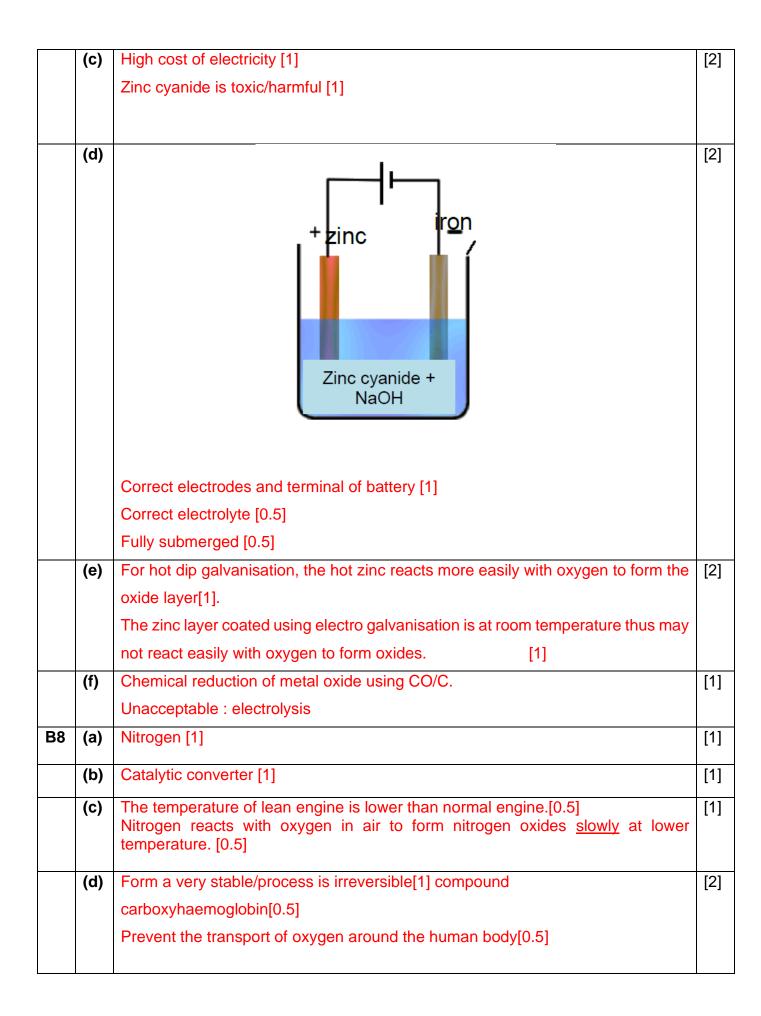
2020	Sec 4 Prelim P1 Ai	nswe	rs
1	D	21	С
2	Α	22	В
3	D	23	В
4	D	24	C
5	С	25	В
6	С	26	Α
7	В	27	С
8	Α	28	В
9	D	29	В
10	D	30	В
11	В	31	D
12	С	32	C
13	C	33	Α
14	D	34	С
15	D	35	С
16	В	36	D
17	В	37	В
18	В	38	D
19	С	39	С
20	Α	40	С
	•		

2020 Sec 4 Prelim P1 Answers

2020 Sec 4 Prelim P2 Answers

Section A

A1	(a)	(i)	brass	[1]		
		(ii)	nitrogen monoxide	[1]		
		(iii)	Aluminium/ Ammonium chloride	[1]		
		(iv)	Ammonium chloride	[1]		
		(v)	water	[1]		
	(b)	Filte Was	aqueous sodium carbonate and aqueous silver nitrate. [1] r the mixture [0.5] to obtain residue.[0.5] h with plenty of water [0.5] and dry between sheets of filter paper. [0.5] ng reagent max 1m	[3]		
A2	(a)		ely together , disorderly [0.5] e over each other [0.5]	[1]		
		Una	cceptable : closely packed			
	(b)	R : 0	Group II [1]	[2]		
		Q : 0	Q : Group VI [1]			
	(c)	RCl ₂	has a giant ionic structure [0.5]	[4]		
			electrostatic forces of attraction between oppositely chargely ions are kened [1]			
		The	ions are mobile for the conduction of electricity.[0.5]			
			has a simple covalent/molecular structure [0.5m]			
		cons	sisting discrete molecules [0.5m]			
		whic	h are <u>electrically neutral</u> . [0.5m]			
		Ther	e are no mobile electrons/ions for the conduction of electricity.			
	(d)	Dilut	e/aqueous hydrochloric acid [1]	[1]		
	(e)	Any	macromolcules	[1]		
	1	1				


A3	(a)		name of halogen	Melting point /°C	Boiling point /°C		[1]
			bromine	-7.2	58.8		
			chlorine	-100.9	-34.7		
			lodine	113.8	184.5		
	(b)	Reactiv	vity decreases down	the group [0.5]			[2]
	(/		size / electron shell ,		wn the Group [0.5] O		L—1
			e between nucleus a				
		electro	static forces of attrac	tion between nucleu	s and electron decre	ases [0.5]	
		gains electron less easily[0.5]					
	(c)		water turns reddish b				[2]
			ne is more reactive th ne displace bromine f				
		Chiefi					
			I dilute nitric acid follo	· ·	rium nitrate [1]		[2]
		white	e precipitate observe	ed.[1]			
	(d)	Chlorin	e is oxidised [0.5] as	the oxidation state of	of chlorine increases	from 0 in	[2]
	()		<u>⊦3 in CIF</u> ₃. [1m]	<u></u>			[_]
		reducir	ng agent [0.5]				
A4	(a)	carbon	dioxide / CO ₂				[1]
	(b)	Zinc io	n [0.5] and copper(II)) ion[0.5]			[2]
	()		When aqueous ammonia is added, precipitate is formed and dissolves in excess				[_]
			aqueous ammonia.[1]				
		aqueot	aninonia.[1]				
	(c)	ZnCO ₃	\rightarrow ZnO + CO ₂				[1]
		Or	Or				
			$3 \rightarrow CuO + CO_2$				
	(d)	Ag ⁺ +C	$Cl^{-} \rightarrow AgCl [1]$				[1]
	(e)	All the	chloride ion have be	en precipiated/reacte	٥d[1]		[1]
A5	(a)	Conce	ntrated [0.5] copper(l	II) bromide [0.5]/ Cor	centrated CuBr ₂		[1]
	(h)	(i)	Electrode C : 2H ⁺ +	20 -> 11- [1]			[0]
	(b)	(i)					[2]
		(ii)	Electrode D : 4OH ⁻ Haber process/ roc	\rightarrow O ₂ + 2H ₂ O + 4e	1]		[1]
	(-)	(ii)	-				[1]
	(c)		$f H_2 = 0.084/24 = 0.0$				[2]
		Mol of	Mol of copper = 0.0035 mol[0.5]				
		Mass o	of copper = 0.0035x6	4= 0.224g [1]			
L	I	L					

(d)	Universal indicator change from green to blue/purple [1]	
	Chloride ions are selectively discharged [0.5]	
	Potassium hydroxide is formed which is alkaline [0.5]	
	OR	
	Universal indicator change from green to colourless. [1]	
	Chloride ions are selectively discharged [0.5]	
	Chlorine gas is formed [0.5] at the anode	

A6	(a)	It consists of atoms [0.5] of different sizes. [0.5] The orderly arrangement of atoms is disrupted. [0.5] The layers of atoms cannot slide over each other easily when a force is applied. [0.5]	[2]
	(b)	Iron in steel is more reactive than copper [1] Iron displace copper from its solution [1]	[2]
	(c)	blue [0.5] solution turns green [0.5] reddish brown/pink solid formed. [1]	[2]
	(d)	Calcium reacts with water in copper (II) sulfate solution [0.5] to form hydrogen gas [0.5] Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$ [1]	[2]
	(e)	Write the ionic equations at anode and cathode. Anode : Fe \rightarrow Fe ²⁺ +2e [1] cathode : 2H ⁺ +2e \rightarrow H ₂ [1]	[2]

Section B

B7	(a)	Zinc is more reactive than iron. [0.5] Zinc will lose electron more easily than iron [1] Thus Zinc corrodes in place of iron. [0.5]	[2]
	(b)	Carbon dioxide is an acidic oxide / acidic gas [1], and thus zinc oxide reacts with it as a base.	[1]

	e)	Lightning/ forest fire	[1]
	(f)	(i) Mol of $CO_2 = 137500/5500 \times 8$ =200mol [1] Volume of $CO_2 = 200 \times 24 = 4800 \text{dm}^3$ [1]	[2]
		 (ii) Correct reactant and product and exo [1] Label Ea and arrow[0.5] Label ΔH and arrow[0.5] 	[2]
		Unacceptable : endo [Total: 10 r	narks]
E B9	(a)	$PbCO_3 + 2HNO_3 \rightarrow CO_2 + H_2O + Pb(NO_3)_2 [1]$	[1]
	(b)	Mole of CO ₂ = 0.1/24 = 0.004167 mol [0.5] Mol of PbCO ₃ = 0.004167 mol [0.5] Mass of PbCO ₃ = 0.004167 x 267 =1.11g [1]	[2]
	(c)	An <u>insoluble layer [0.5] of lead(II) sulfate</u> [0.5]will form / <u>coat around</u> lead(II) carbonate, preventing further reaction. [1]	[2]

	(d)	Fina Rate Wro Etha ther lead	ing to lesser frequency	ments [0.5] [1]	[4]
	(e)		carbonate usedtiIron(II) carbonateLead(II) carbonate	ime taken for white precipitate to form in limewater/ 50 30	[1]
0 B9	(a)		hat the concentration of tion [1]	of thiosulfate is proportional to volume of thiosulfate	[1]
	(b)	(i)	40[0.5], 10[0.5], 10 14 [0.5]	0[0.5]	[2]
		(ii)	increase in the fre	ses [0.5] hiosulfate increases[0.5] equency of collisions between reactant particles [0.5] ency of effective collisions [0.5]	[2]

(c)	The time taken for the cross to disappear in a smaller beaker will be shorter [1] as a smaller amount of sulfur is needed to cover the cross [1] as its base is smaller	[2]
(d)	When the temperature is increased, the particles gain kinetic energy/ move faster. [0.5] There is also an increase in the proportion of particles having energy equal or more than the activation energy.[0.5] Frequency of collision increases [0.5] Hence chances of effective collisions increase [0.5]	[2]
(e)	Acidified potassium manganate (VII) turns from purple [0.5] to colourless.[0.5]	[1]