JC1 H2 Mathematics 2019 Common Test Solutions

1	Solution [5]	Markers' Comments
	Based on the given information, we have the following:	Generally quite well done
	$y = x + z \Longrightarrow x - y + z = 0 - \dots - (1)$	across the level; some
	$29x + 21y + 124z = 295 - \dots (2)$	students tend to solve the
	$24x + 27y + 118z = 295 + 3 \Longrightarrow 24x + 27y + 118z = 298 (3)$	system of linear equations manually instead of using
	Using GC to solve the above system of equation, we have: x = 3, $y = 4$ and $z = 1$.	the GC.
	Thus, the scores for the various units are as follow:	
	Unit A: 298 points	
	Unit B: 295 points	
	Unit C: $26 \times 3 + 25 \times 4 + 121 \times 1 = 299$ points	
	Thus, Unit C is the champion of the competition.	

2	Solution [7]	
i	Method 1	For method 1, many
	$2x^{2}-2x+1=2(x^{2}-x)+1$	students made mistakes in
	$(1)^2$	their argument, e.g. writing
	$=2\left(x-\frac{1}{2}\right)+\frac{1}{2}$	$\left(x-\frac{1}{2}\right)^2 > 0$ instead of
	Since $\left(x - \frac{1}{2}\right)^2 \ge 0$, $2\left(x - \frac{1}{2}\right)^2 + \frac{1}{2} > 0$ for all real <i>x</i> .	$\left(x-\frac{1}{2}\right)^2 \ge 0$ etc. Some
	$\therefore 2x^2 - 2x + 1$ is always positive for all real <i>x</i> .	completed the square wrongly.
	Method 2	
	Since discriminant = $(-2)^2 - 4(2)(1) = -4 < 0$ and	For method 2, a complete
	coefficient of x^2 is positive,	argument needs to have
	$\therefore 2x^2 - 2x + 1$ is always positive for all real x.	both "discriminant < 0 " and
		"coefficient of $x^2 > 0$ ".
		might imply the quadratic
		expression is always
		negative instead of positive.

ii	$\frac{2x^3 - 2x^2 + x}{(2x+1)(x-1)^2} \ge 0, x \ne -\frac{1}{2}, \ x \ne 1$	It would be good to note from the start that $x \neq -\frac{1}{2}$
	$\frac{x(2x+1)(x-1)}{(2x+1)(x-1)^2} \ge 0$ Since $2x^2 - 2x + 1 > 0$ for all real x , $\frac{x}{(2x+1)(x-1)^2} \ge 0$ Using number line, $\frac{+}{-\frac{1}{2}} = 0$ $x < -\frac{1}{2} \text{ or } x \ge 0, x \ne 1$	and $x \neq 1$. Students need to show proper working and explain why $(2x^2 - 2x + 1)$ need not be considered in the number-line investigation. Students need to take note of when "=" is included. Some students used other analytical approaches which considered cases how each sub-expression's sign should be etc. It is tedious to do that and students have to take care of many details in the argument.
iii	$\frac{2(\ln x)^{3} - 2(\ln x)^{2} + \ln x}{(2\ln x + 1)(1 - \ln x)^{2}} \ge 0$ Replace x by ln x : $\ln x < -\frac{1}{2} \text{ or } \ln x \ge 0, \ \ln x \ne 1$ $0 < x < e^{-\frac{1}{2}} \text{ or } x \ge 1, \ x \ne e$	Almost all students know to make use of part (ii)'s answer and replace x with lnx. Quite many students thought that $\ln x < -\frac{1}{2}$ cannot be solved (that lnx has to be > 0). For those who attempted solving it, many did not realise that " $x > 0$ ", else lnx is undefined.

3	Solution [7]	
	(i) $y \uparrow$ y = f(x) y = f(x) $(4, \ln 2)$ x Note: the point (0, 1) should be shown the point (4, \ln 2)	 Generally quite badly done. Some common mistakes are: Missing axial intercepts; Missing ending points (need to be obvious) indicated and labeled; Need to know that ln 2 <1 and hence there is a need to be indicated correctly on the graph
	(ii) $R_{g} = \left(0, \frac{9}{8}\right]$ Since $R_{g} = \left(0, \frac{9}{8}\right] \subset \left[0, 4\right] \setminus \{2\} = D_{f}$, The composite function fg exist.	Very badly attempted as students did not look at the graph of g to determine the range. The correct domain of f should also be $[0,2) \cup (2,4]$. A lot of students did not read the question carefully to determine the domain of f.
	(iii) f(0) = $\frac{2}{2-0} = 1$, f $\left(\frac{9}{8}\right) = \frac{2}{2-\frac{9}{8}} = \frac{16}{7}$ By mapping method, $\left[0,1\right) \xrightarrow{g} \left(0,\frac{9}{8}\right] \xrightarrow{f} \left(1,\frac{16}{7}\right]$ $R_{fg} = \left(1,\frac{16}{7}\right]$ <u>Alternatively,</u>	Quite a number of students simply ignore all workings and simply write out the wrong answer and this resulted in a lot of marks lost. Students should show clear workings or thoughts. Some common errors include $R_{\rm fg} = R_{\rm g}$ or $R_{\rm fg} = R_{\rm f}$

5	Solution [7]		
	$B = \frac{A}{4 \text{ units}}$ $B = \frac{A}{4 \text{ units}}$ $C = \frac{BC}{\sqrt{1+12\theta^2}} \text{ (show it is then } BC \approx (1+12\theta^2)$ $= 1 + \frac{1}{2}(12\theta^2) + \frac{\frac{1}{2}(\frac{1}{2} - \frac{1}{2})}{2!}$	Applying cosine rule: $BC^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos \theta$ $\approx 25 - 24 \left(1 - \frac{\theta^{2}}{2}\right), \text{ since } \theta \text{ is small}$ $= 1 + 12\theta^{2}$ hown) $\frac{1}{2}$ $\frac{1}{2} \left(12\theta^{2}\right)^{2} + \dots$	Most students are aware that they need to use cosine rule and small angle approximation, and were able to show the correct result, except for some who fumbled with applying binomial expansion to obtain the correct final answer. Overall a huge majority lost presentation mark in this question due to the careless use of "=" and "≈" interchangeably.
	$\approx 1 + 6\theta^2 - 18\theta^4$ (up to	$\theta \theta^4$ term)	
	where $p = 6$, $q = -18$	3. (shown)	
	Sub $\theta = \frac{1}{4}$ into the ab $\sqrt{1+12\left(\frac{1}{4}\right)^2} \approx 1+6\left(\frac{1}{4}\right)^2$ $\sqrt{\frac{7}{4}} \approx 1+6\left(\frac{1}{4}\right)^2 -18\left(\frac{1}{4}\right)^2$	pove result: $\frac{1}{4} \int_{-18}^{2} -18 \left(\frac{1}{4}\right)^{4}$ $\frac{1}{4} \int_{-18}^{4} \left(\frac{1}{4}\right)^{4}$	This part was not well done with a significant number of students only substituting ¹ / ₄ to the LHS of the expression, some did not obtain the correct answer due to the error in the previous part.
	Thus, $\sqrt{7} \approx \sqrt{4} \times \left(1 + \frac{1}{10}\right)^{1/2}$ As $\frac{1}{10}$ is closer to 0 c will give a better estim	$6\left(\frac{1}{4}\right)^2 - 18\left(\frac{1}{4}\right)^4 = \frac{167}{64}$ compared to $\frac{1}{4}$, the substitution $\theta = \frac{1}{10}$ nate of the value of $\sqrt{7}$.	There are many who did not provide proper explanation for this part e.g. some used "closer to 1" and some others gave the correct reason but stated that ¹ / ₄ is better

6	Solution [10]	
	(i) y	Most students were able to sketch the curve with the domain $[3, \infty)$, with some not labelling the max pt and x-intercept.
	(3, 9) $y = f(x)$ (0)	For the 2^{nd} part, students need to mention about the max pt (3, 9). Otherwise it is not sufficient to explain that the function is not 1-1 for $a < 3$ as we still need to ascertain that the function is 1-1 for $a > 3$. Also,
	When $a \ge 3$, any horizontal line $y = k$ where $k \in \mathbb{R}$ will intersect the graph of $y = f(x)$, where $x \in [a, \infty)$, at most once. Thus f is one-to-one and f^{-1} exist. Also, the turning point $y = 6x - x^2$ occurs when $x = 3$. \therefore Least value of a is 3.	attention should be paid to the correct use of term like 'at most 1 point' or 'more than 1 point' in the explanation of horizontal line test for 1-1 property.
	(ii) Let $y = 6x - x^2$ $y = -(x^2 - 6x)$ $= -(x^2 - 6x + 3^2 - 3^2)$ $= -(x - 3)^2 + 9$	Some students were not able to perform completing square or use the quadratic root formula in trying to express x in terms of y .
	$(x-3)^{2} = 9 - y$ $x-3 = \pm \sqrt{9-y}$ $x = 3 \pm \sqrt{9-y}$ Since $x \ge 3$, $x = 3 + \sqrt{9-y}$ $D_{f^{-1}} = R_{f} = (-\infty, 9]$ $\therefore f^{-1} : x \mapsto 3 + \sqrt{9-x}, x \le 9$	Some students also did not explain on the rejection of the expression $x=3-\sqrt{9-y}$. Other errors include not expressing the answer for f^{-1} in similar form and not stating the domain for f^{-1} .

7	Solution [9]	
	$u_n - u_{n+1}$ $= \frac{2n-1}{n(n-1)} - \frac{2n+1}{(n+1)(n)}$ $= \frac{(2n-1)(n+1) - (2n+1)(n-1)}{n(n-1)(n+1)}$ $= \frac{2n^2 + n - 1 - (2n^2 - n - 1)}{n(n-1)(n+1)}$ $= \frac{2n}{n(n-1)(n+1)}$ $= \frac{2n}{n(n-1)(n+1)}$ (shown)	No problem for this part except for very few algebraic manipulation errors.
	(n-1)(n+1)	

i	$\sum_{n=1}^{N}$ 1	Most students were able to
	$\sum_{r=2}^{\infty} \frac{1}{(r+1)(r-1)}$	answer this part perfectly
	$r=2$ $(\cdot \cdot \cdot \cdot \cdot)$ $(\cdot \cdot \cdot \cdot)$	well.
	$=\frac{1}{2}\sum_{n=1}^{N}\frac{2}{n}$	However some students did
	$2\sum_{r=2}^{2} (r+1)(r-1)$	not follow the requirement
	$1 \sum_{n=1}^{N} \langle n \rangle$	of question ie to use the fact
	$=\frac{1}{2}\sum_{r=1}^{n}(u_{r}-u_{r+1})$	$\sum_{n=1}^{N}$
	$\sum_{r=2}^{n}$	$\sum_{r=2}^{2} \overline{(r+1)(r-1)}$
	$\begin{bmatrix} u_2 & -u_3 \\ -u_3 \end{bmatrix}$	$1 \sum_{n=1}^{N} (n) = 1$
	$=\frac{1}{2} \begin{vmatrix} u_{3} - u_{4} + \\ \vdots \end{vmatrix} = \frac{1}{2} (u_{2} - u_{N+1})$	$==\frac{1}{2}\sum_{r=2}^{\infty}(u_r-u_{r+1})$ from the
		earlier part and perform
	$\lfloor y_N - u_{N+1} \rfloor$	method of difference.
	1(2(2)-1) (N+1)-1)	Instead they attempted to
	$= \frac{1}{2} \left[\frac{1}{2(2-1)} - \frac{1}{(N+1)(N+1-1)} \right]$	$express$ $\frac{1}{2}$
	2(2(2 - 1) - (1 + 1))	(r+1)(r-1)
	$=\frac{1}{2}\left[\frac{3}{2}-\frac{2N+1}{2}\right]$	$=\frac{\frac{1}{2}}{\frac{1}{2}}-\frac{\frac{1}{2}}{\frac{1}{2}}$ and applied
	2(2 N(N+1))	r-1 $r+1$
		MOD which is not correct.
ii	$\frac{2}{2} + \frac{1}{2}$	Many students failed to
	Since $\frac{2N+1}{N} = \frac{N^2 N^2}{N^2} \rightarrow 0$ as $N \rightarrow \infty$, the series	explain that $\frac{2N+1}{2N+1} \rightarrow 0$
	$N(N+1) = 1 + \frac{1}{1 + \frac{1}{1$	N(N+1)
	N	as $N \rightarrow \infty$. Instead arguing
	converges and	that term 1
	$\sum_{n=1}^{\infty} \frac{1}{(n-1)(n-1)} = \frac{1}{2} \left(\frac{3}{2} - 0 \right) = \frac{3}{4}$	that term $\frac{1}{(r+1)(r-1)} \rightarrow 0$
	$\sum_{r=2}^{\infty} (r+1)(r-1) 2(2) 4$	is NOT sufficient. Recall
		the non- convergent series
		1 1 1 1
		2 3 4
iii	$\sum_{n=1}^{N-1} \frac{1}{(replace r by r 1)}$	Students need to show the
	$\sum_{r=2}^{2} \frac{(r+2)(r)}{(r+2)(r)}$ (replace r by r-1)	manipulation steps
	r-1=N-1 1	involving summation sign
	$=\sum_{i=1}^{n} \frac{1}{(i-1-2)(i-1)}$ (*)	clearly beyond just
	$r_{r-1=2}$ $(r-1+2)(r-1)$	mentioning 'replace
	$-\sum_{n=1}^{N} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{n} = 1$	replace r by $r-1$ or
	$-\sum_{r=3}^{3} \frac{(r+1)(r-1)}{(r+1)(r-1)} - \sum_{r=2}^{3} \frac{(r+1)(r-1)}{(r+1)(r-1)} - \frac{(3)(1)}{(3)(1)}$	replace r by $r+1$
	1(2, 2N+1)	Students are supposed to
	$\left = \frac{1}{2} \right = \frac{3}{2} - \frac{2IV + 1}{V(V - 1)} \left -\frac{1}{2} \right $	instead of the MOD
	2(2 N(N+1)) 3	intermediate steps or even
	5 $2N+1$	to repeat the whole MOD
	$=\frac{12}{12}-\frac{12}{2N(N+1)}$	process in trying to find
		answer to expression (*).
		unswer to expression ().

9	Solution [12]	
i	$u_1 = 1.005(20000) - 450 = 19650$	Some students do not know
	$u_2 = 1.005(19650) - 450 = 19298.25$	how to make use of the
	$u_3 = 1.005(19298.25) - 450 = 18944.74$	recurrence relation.
		to nearest cents (2 d.p.).
ii	$u_n = 1.005u_{n-1} - 450$	Quite many students do not
	$= 1.005 (1.005 u_{n-2} - 450) - 450$	know how to attempt this question
	$= 1.005^2 u_{n-2} - 1.005(450) - 450$	Some students managed to
	$= 1.005^{2} (1.005u_{n-3} - 450) - 1.005(450) - 450$	get the answers (the solutions are
	$=1.005^{3}u_{n,3}-1.005^{2}(450)-1.005(450)-450$	mathematically sound) but
	n-5 · · · · · · · · · · · · · · · · · · ·	the approach of
	$=1.005^{n}u_{0}-1.005^{n-1}(450)-1.005^{n-2}(450)-\ldots-450$	formulating the series did not meet the requirement of
	$=1.005^{n}(20000)-450(1+1.005++1.005^{n-1})$	question. Students need to
		apply recurrence relation to
	$=1.005^{n}(20000)-450\left(\frac{1.005^{n}-1}{1.005^{n}-1}\right)$	the expression already
	(1.005-1)	given in the box.
	$=90000-1.005^{n}(70000)$ (shown)	Those who can manage the
		question come up with very
		nice and succinct solutions.
111	The loan will eventually by paid off when $90000-1.005^n (70000) \le 0$	Students need to realise that even if they are stuck in part
	$9 \le 1.005^n(7)$	(ii), they can use its result to
	9	continue solving for this question part.
	$\ln \frac{1}{7}$ 50.200	Amonton barn
	$1.005^{n} \ge \frac{1}{7} \implies n \ge \frac{1}{\ln 1.005} = 50.388$	If students did not use
		inequality sign, they need to
	Alternatively,	and not 50 (look at the
	$n \qquad u_n = 90000 - 1.005^n (70000)$	alternative approach).
	50 174.19 > 0	
	51 -2/4.90 < 0	A many states and a sector of
	\therefore 51 months were required to pay off the loan.	attempted the last part, only
	$u_{50} = 90000 - 1.005^{50} (70000)$	a nandrul realised the need to multiply u_{50} by 1.005 to
	= \$174.19	get \$175.06.
	Hence, the final repayment amount	
	$=$ \$174.19 \times 1.005 $=$ \$175.06	

10	Solution [12]			
	(i) Given $x = t - \frac{1}{t} + 2$; $y = t + \frac{1}{t}$,			This part was mostly quite well done.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 + \frac{1}{t^2}$ and $\frac{\mathrm{d}x}{\mathrm{d}t}$			
	Then:			
	1_	1		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}t} = \frac{1-t}{\mathrm{d}t}$	$\frac{t^2}{1}$		
	dx dx/dt 1+dt	$\frac{1}{\sqrt{2}}$		
	* ² 1	t		
	$=\frac{t^{2}-1}{t^{2}+1}$			
			dy o	Most students were able to
	(ii) For stationary poi	nt on curve, we let	$\frac{y}{\mathrm{d}x} = 0.$	obtain $t = 1$.
	Then $t^2 - 1 = 0 = 0$	$t^2 - 1 \rightarrow t - 1$ (given	(2, 4)	Some students incorrectly
	Then, $\frac{1}{t^2+1} = 0$	$i = 1 \longrightarrow i = 1$ (since	$l \in l \ge 0.5$	solved $t^2 + 1 = 0$ as well
	When $t = 1$,			which should not be the
	x = 1 - 1 + 2 = 2 ar	nd		case.
	y = 1 + 1 = 2			Some students also forgot
	Thus the stationar	y point is (2, 2)		the point.
	Next we perform s	on test to determine	e its nature.	
	x 1.995	2	2.005	The major error in this part
	t 0.9975031	1	1.0025031	was in the determining of
	$\frac{dy}{dy} = -0.00250 < 0$	0	0.00250 > 0	nature, majority of students
	dx			did not perform the
				correctly. For first
	OR			derivative test, there is a
	$d^2 \cdots d(d \cdots)$			need to consider small
	$\left \frac{d^2 y}{dr^2} = \frac{d}{dr} \left \frac{dy}{dr} \right $			corresponding t and then
	dx dx (dx)	find the corresponding		
$=\frac{d}{dt}\left(\frac{dy}{dt}\right)\cdot\frac{dt}{dt}$				dy/dx. For second
$= \frac{(t^2+1)(2t)-(t^2-1)(2t)}{(t^2+1)^2} \cdot \frac{t^2}{1+t^2}$			derivative test, many	
			$d^2 y = d(dy)$	
			$\frac{d^2 y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right)$ which is	
	$d^2 y = 1$	not true.		
	$\left \frac{1}{dx^2} \right _{t=1} = \frac{1}{2} > 0$			
	Thus, we conclude that			

