2024 PU3 H2 Physics Prelim Paper 2 Suggested Answers

1	(a)(i)	The <u>vertical acceleration of the ball is constant in magnitude (9.81 ms⁻²) and</u> <u>directed downwards throughout the path</u> .	B1
		Hence as the ball moves from the ground to the highest point, <u>vertical</u> <u>velocity decreases at a constant rate till vertical velocity reaches zero.</u>	B1
		As the ball moves from the highest point towards the ground, <u>vertical velocity</u> increases at constant rate.	B1
	(a)(ii)	The horizontal acceleration of the ball is zero throughout the path.	B1
		Hence the horizontal velocity is constant in magnitude.	B1
	(b)(i)	Considering the ball just after it leaves the ground to the point just before it hits the ground,	
		$v_{y} = u_{y} + a_{y}t$ $15 \sin 20^{o} = (-15 \sin 20^{o}) + (9.81)t$ $t = \frac{30 \sin 20^{o}}{9.81}$	
		$t = \frac{30 \sin 20^{\circ}}{9.81}$	C1
		$s_x = u_x t = (15\cos 20^o) \frac{30\sin 20^o}{9.81}$	C1
		= 14.7 m	A1
	(b)(ii)	Considering the ball just as it drops down the cliff to just before it hits the ground.	
		$s_y = u_y t + \frac{1}{2}a_y t^2$	
		$70 = -15\sin 20^{\circ}t + \frac{1}{2}(9.81)t^2$	C1
		t = - 3.29 (NA) s or 4.34 s	C1
		$s_x = u_x t - 14.7 = (15 \cos 20^o) (4.34) - 14.7$ = 46.4 m	C1 A1

2	(a)	Gravitational field strength is defined as the force per unit mass acting on a small mass placed at a point in the gravitational field.	A1
	(b)	For the same difference in gravitation potential, the distance between the potential lines is increasing as the distance from the surface of Mars, show that gravitation field strength is decreasing.	A1
	(c)	Loss in gravitational potential energy = gain in kinetic energy of the satellite $(90)(-6.0 - (-8.0)) \times 10^6 = (1/2)(90)v^2$ $v = 2000 \text{ ms}^{-1}$	C1 A1
	(d)(i)	Centripetal force of the satellite is provided by the gravitation force. $mr(\frac{2\pi}{T})^2 = \frac{GMm}{r^2}$ $T = \sqrt{\frac{4\pi^2 r^3}{GM}}$	C1 C1 (correct
		$= \sqrt{\frac{4\pi^2(3.4 \times 10^6 + 1.7 \times 10^7)^3}{G(6.4 \times 10^{23})}}$ = 88607 s = 24.6 h	radius)
	(d)(ii)	$KE = \frac{1}{2}mr^{2}\omega^{2}$ $= \frac{1}{2}(90)(3.4 \times 10^{6} + 1.7 \times 10^{7})^{2} \left(\frac{2\pi}{88607}\right)^{2}$ $= 9.42 \times 10^{7} \text{ J}$ Alternative $KE = \frac{GMm}{2r}$ $= \frac{G(6.4 \times 10^{23})(90)}{2(3.4 \times 10^{6} + 1.7 \times 10^{7})}$	C1 A1
	(d)(iii)	 = 9.42 x 10⁷ J Due to work done against friction, total energy of the satellite decreases, causing the satellite to fall towards Mars (or radius of orbit decreases). As the satellite fall towards Mars, it experiences a loss in gravitational 	B1 B1
		potential energy and an <u>increase in kinetic energy</u> . (Or Since KE = GMm/2r as radius decreases, KE increases)	

3	(a)	Despite both being at 100 °C, steam transfers more (heat or thermal) energy to the skin than boiling water.	B1
		This is because <u>steam releases (heat) energy</u> proportional to the <u>latent heat</u> of vaporisation during condensation in addition to the heat energy released on cooling of condensed water on skin.	B1
		This is much higher than the (heat) energy released by boiling water on contact with the skin.	
	(b)(i)	Use state A:	
		$n = \frac{P_A V_A}{RT_A} = \frac{20 \times 10^5 \times 1.2 \times 10^{-4}}{8.31 \times 800}$ = 0.0361 mol	C1
		If state D is used, $n = 0.0362$ mol.	A1
	(b)(ii)1.	$T_{B} = \frac{P_{B}V_{B}}{R_{B}n} = \frac{20 \times 10^{5} \times 5.2 \times 10^{-4}}{8.31 \times 0.0361}$	
		= 3467 K	A1
		If $n = 0.0362$ mol is used, $T_B = 3457$ K.	
		OR	
		$\frac{V_A}{T_A} = \frac{V_B}{T_B} \\ \frac{1.28}{800} = \frac{5.2}{T_B}$	
		$\begin{array}{ccc} T_A & T_B \\ 1.28 & 5.2 \end{array}$	
		$\frac{1}{800} = \frac{1}{T_B}$ $T_B = 3467 \text{ K}$	
		$I_B = 3407$ K	
	(b)(ii)2.	$\Delta U = \frac{3}{2} nR\Delta T$	C1
		$= \frac{3}{2} \times 0.0361 \times 8.31 \times (3467 - 800)$	C1
		= 1200 J (allow ecf)	A1
		Accept $\frac{3}{2}p\Delta V = 1200 \text{ J}.$	
	(b)(ii)3.	$W = -P\Delta V = -20 \times 10^5 \times (5.20 - 1.20) \times 10^{-4}$	C1
		= -800 J	A1
		Award 1 mark for +800 J.	
	(b)(ii)4.	From the first law of thermodynamics,	
		$\Delta U = Q + W$	
		$Q = \Delta U - W$ Q = 1200 - (-800) = 2000 J (allow ecf)	A1
		Q = 1200 - (-800) = 2000 3 (allow ect)	
	(b)(iii)	From D to A, since Q is zero, $W_{DA} = \Delta U_{DA}$	C1
		$W_{DA} = \frac{3}{2} \times 0.0361 \times 8.31 \times (800 - 226) = 258 \text{ J or } 259 \text{ J}$ if used <i>n</i> 0.0362	C1
		$W_{\text{net by gas}} = 800 + 390 + 0 - 259 = 932 \text{ J or} \underline{931 \text{ J}}$ is used <i>n</i> =0.0362	
		Allow ecf.	A1
		Students can also use $W_{DA} = \frac{3}{2}(P_A V_A - P_B V_B) = 258 \text{ J}$	
L	I		

4	(a)	In a polarised wave, the <u>vibrations of wave particles are limited to only one</u> <u>axis;</u> whereas an unpolarised wave is not (i.e. no specific axis of vibrations or many different axis of vibrations).	B1
	(b)(i)	0 as no light will be able to pass through the polariser given it is perpendicular.	A1
	(b)(ii)1.	$A_{3} = A_{2} \cos(62^{\circ}-23^{\circ})$ $A_{2} = A_{1} \cos(23^{\circ})$ thus $A_{3} = A_{1} \cos(23^{\circ}) \cos(62^{\circ}-23^{\circ})$ $= 0.715 A_{1}$	M1 M1 A0
	(b)(ii)2.	let the initial amplitude (unpolarised light) = A_0 $\frac{1}{2} = (\frac{A_1}{A_0})^2$ $A_0 = \sqrt{2}A_1 = 1.41 A_1$ $\frac{I_3}{I_0} = (\frac{A_3}{A_0})^2 = (\frac{0.715A_1}{\sqrt{2}A_1})^2 = 0.256$ Percentage of intensity reduced = (1 - 0.256) x 100% = 74.4%	C1 C1 A1

5	(a)(i)	$R_{\rm R} = 105\Omega$	A1
		$R_{\rm Th} = 50 \ \Omega$	A1
	(a)(ii)	$V = \frac{50}{105+50} \times 12$ = 3.87 V	C1 A1
	(a)(iii)	The p.d across resistor and thermistor is equal so this implies that the resistance across each component is equal.	C1
		Hence the temperature is 50 °C.	A1
	(b)(i)	p.d across length $x = \frac{x}{l} E$ Since the appliance is parallel to length of x, p.d is the same. Thus	M1
		p.d across the appliance is $x = \frac{x}{l} E$	A1
	(b)(ii)	p.d across appliance = 20 / 100 x 5.0 = 1.0 V current = 1/10.0 = 0.10 A	A1
	(b)(iii)	ε = 45.0 / 100 x 5.0 = 2.25 V	A1

6	(a)	A magnetic field is a <u>region of space in which a magnetic force is experienced</u> by moving charges or current-carrying conductors or permanent magnets placed in this field.	A1
	(b)(i)	As the positive ion passes into the region of magnetic field, by Flemming's left hand rule, there is a magnetic force on the ion towards the positive plate.	B1
		Due to the electric field, there will be a electric force on the ion towards the negative plate.	B1
		If the magnitude of these two forces are equal, the ion will be able to pass through without deviation.	B1
		(If student state "Electric force is opposite in direction to magnetic force" award only 1 mark out of the first 2 B1 marks).	
	(b)(ii)1.	In the region with B-field only there exist a <u>magnetic force (of constant</u> <u>magnitude) perpendicular to direction of motion</u> causes ions to undergo centripetal acceleration / provides the centripetal force.	A1
	(b)(ii)2.	$B'qv = \frac{mv^2}{r}$ $\frac{m}{r} = \frac{B'q}{v} = \text{constant}$ $\frac{M}{26.2} = \frac{12u}{22.4}$	C1
		M = 14u	A1

(a)(i)	Photoelectric effect is the ejection/emission of an electron from a <u>metal</u> surface when the surface is irradiated with electromagnetic radiation of a high enough frequency.	A1
(a)(ii)	Allow 350 nm to 400 nm	A1
(a)(iii)	Threshold frequency is determined when there is no responsivity from photocathode/ no release of photoelectrons.	B1
	From Fig. 7.2, threshold wavelength is approximately 640 mm. Threshold frequency is found by using speed of light divided by threshold wavelength (or 630 nm)	B1
(a)(iv)	Using $hc/\lambda = work$ function + $E_{k, max}$,	C1
	$hc/(450 \times 10^{-9}) = h (4.76 \times 10^{14}) + 0.5(9.11 \times 10^{-31})v^2$ v = 5.27 x 10 ⁵ m s ^{-1*}	C1 A1
(a)(v)	Using a low work function photocathode will allow electrons to be emitted easily with photons of larger wavelength.	A1
(b)(i)	Current = nq/t	01
	7.8 x 10 ⁻⁴ = (n/t)*(1.6 x 10 ⁻¹⁹) n/t = 4.88 x 10 ¹⁵ s ^{\Box1}	C1 A1
(b)(ii)	Number of photons per unit time	
	$= 4.88 \times 10^{15} / (0.01)$ = 4.88 × 10 ¹⁷	A1
(b)(iii)	4.8 mA of current is detected from photocathode when 1 W of power of EM radiation is incident on it.	A1
(c)(i)	Use wavelength = 225 nm, R = 9.0 mA/W and wavelength = 540 nm (or 550 nm), R = 22 mA/W to correctly determine η at 5 %.	B1 B1
(c)(ii)	Correct computation of values with maximum values of 2sf To deduct one mark for one wrong calculation.	
	η / % λ / nm R / mA W ⁻¹	
	3 300 7.2 3 400 9.7	
	3 500 12	A1
	3 600 14 3 700 17	A1
(c)(iii)	Correct plotted points	B1
\-/\···/	with best-fit curve	B1
(d)(i)	The voltage used in PMT is higher than 1000V and must be electrically insulated for safety reason. OR Any reasonable answer	B1
(d)(ii)	Use in eye devices to measure interruption of light. OR	B1
	 To detect radiation. OR Measure intensity and spectrum of light emitting materials in laboratory. 	