

RIVER VALLEY HIGH SCHOOL JC 2 PRELIMINARY EXAMINATION

CANDIDATE NAME							
CLASS	2	0	J				
CENTRE NUMBER	S				INDEX NUMBER		

H2 CHEMISTRY

9729/03

Paper 3 Free Response

21 September 2021

2 hours

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. If additional space is required, you should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer all the questions.

Section B

Answer one question. Circle the question number of the question you attempted.

The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

	For Examiner's Use								
Question Number	1	2	3	4	5	s.f.	units	Total	
Marks	20	22	18	20	20			80	

This document consists of **32** printed pages and **0** blank pages.

River Valley High School 2021 Preliminary Examination 9729/03/PRELIMS/21

[Turn over

RV RV

RV RV RV

Section A

Answer **all** the questions in this section.

In a 2014 paper published in the Journal of Agricultural and Food Chemistry, Hendon and Colonna-Dashwood discovered the effect of water hardness on coffee flavour. Compounds in hard water tend to attach to the flavourful elements in roasted coffee beans during brewing. Water with higher levels of magnesium will likely extract more flavour from a coffee bean.

Water described as "hard" is high in concentration of Total Dissolved Solids (TDS), specifically calcium and magnesium. The hardness of water may be reported in parts per million (ppm). The solute concentration of a dilute aqueous solution in units of mg dm⁻³ is called parts per million, or ppm.

Classification	ppm
Soft	0 ` 17.1
Slightly hard	17.1 ` 60.0
Moderately hard	60.0 ` 120
Hard	120 ` 180
Very hard	> 180

- (a) In a sample of Singapore's tap water, the concentration of magnesium and calcium ions present are found to be 5.97×10^{5} mol dm's and 5.49×10^{4} mol dm's respectively. These two ions can be separated by selective precipitation with potassium hydroxide. The numerical values of solubility product of magnesium hydroxide and calcium hydroxide at 25 °C are 1.50×10^{11} and 5.50×10^{6} respectively.
 - (i) Calculate the total concentration of magnesium and calcium ions in ppm, and hence classify the hardness of water in this sample of tap water.

[2]

[Mg²⁺] in ppm = $5.97 \times 10^{5} \times 24.3 \times 1000$

= 1.45 ppm

[Ca²⁺] in ppm = $5.49 \times 10^{-4} \times 40.1 \times 1000$

= 22.0 ppm

Total $[Mg^{2+}]$ and $[Ca^{2+}] = 1.45 + 22.0 = 23.5 ppm$

The sample of water is slightly hard.

	(ii)	Calculate the minimum pH of the solution at which the magnesium ion precipitates as magnesium hydroxide.	[2]			
		Ppt is formed when IP $(Mg(OH)_2) \ge K_{sp} (Mg(OH)_2)$,				
		$(5.97 \times 10^{5})[OH]^{2} \ge 1.5 \times 10^{-11} \text{ mol}^{3} \text{ dm}^{9}$				
		$[OH^{-}] \ge 5.01 \times 10^{-4} \text{ mol dm}^{-3}$				
		Minimum pH = 14 - pOH				
		= 14 - 3.30				
		= 10.7				
	(iii)	The magnesium hydroxide continues to precipitate out of the solution as potassium hydroxide is being added continuously. Eventually, the concentration of the hydroxide becomes high enough to precipitate the calcium ions as well.				
		What is the concentration of magnesium ions when calcium ions begin to precipitate?	[2]			
		When IP $(Ca(OH)_2) = K_{sp} (Ca(OH)_2)$,				
		$(5.49 \times 10^{-4})[OH]^2 = 5.5 \times 10^{-6} \text{ mol}^3 \text{ dm}^{-9}$				
		$[OH] = 0.100 \text{ mol dm}^{3}$				
		When IP $(Mg(OH)_2) = K_{sp} (Mg(OH)_2)$,				
		$[Mg^{2+}](0.100)^2 = 1.5 \times 10^{11} \text{ mol}^3 \text{ dm}^9$				
		$[Mg^{2+}] = 1.50 \times 10^{9} \text{ mol dm}^{3}$				
(b)						
	HO C2					
	Eugenol					
	Like halid	other alkenes, it undergoes hydrohalogenation when treated with hydrogen les.				
	(i)	Draw a labelled diagram showing the orbital overlap between the carbon atoms C1 and C2 and state the hybridisation involved.				
		Do not include other atoms.	[2]			

		$\begin{array}{c} p \text{ orbitals} \\ \hline \sigma \text{ bond} \\ \hline \end{array}$				
	(ii)	Hydrohalogenation of unsymmetrical alkenes results in a mixture of products. In such cases, the major product can be predicted using Markovnikov's rule. Describe the mechanism of the reaction between eugenol and hydrogen chloride.				
		You may represent eugenol using R1 .	[2]			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	(iii)	With reference to your mechanism in (b)(ii) , explain why the major product is formed.	[2]			
		In step 1, the <u>more stable secondary</u> carbocation intermediate is formed instead of a <u>primary</u> carbocation. (More) alkyl groups exert an <u>electron-donating effect</u> , helping to <u>reduce/disperse the positive charge</u> on the carbocation, stabilising it.				
(c)	Hydration of alkenes via hydroboration favours formation of the anti–Markovnikov product. The hydroboration reaction involves 2 stages; first with limited borane, BH ₃ followed by treatment with alkaline hydrogen peroxide.					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		R = alkyl/aryl group				

	It is suggested that the mechanism goes through the formation of the intermediate below.						
				$\begin{array}{c} & \ominus \\ & BH_3 \\CC\\ & \end{array}$			
	(i)				orane can be consider ion reaction in (b)(ii).		
		above wh	en eugenol reacts	with borane. Indica	n of the intermediate te clearly the polarity e appropriate atoms.	of the	
		H,	H H Β δ+ δ+	- δ- H	$\begin{matrix} R_1 & H \\ \begin{matrix} - \end{matrix} & \begin{matrix} - \end{matrix} \\ H & \begin{matrix} - \end{matrix} \\ C & \begin{matrix} - \end{matrix} \\ \oplus & \begin{matrix} - \end{matrix} \\ BH_3 \\ \ominus \end{matrix}$		
	(ii)		•	in the oxidation nun peroxide in step 2	nber of the reactive of the reaction.	arbon,	
				ed to -BH ₂ changes	s from -3 to -1.		
(d)	and The	ottles of hali iodine. table show	s the results of ex	as X 2, Y 2 and Z 2.	They are chlorine, by the halogens X_2 , Y_2 and Z^- ions.		
			X⁻(aq)	Y⁻(aq)	Z⁻(aq)		
		X ₂	no reaction	no reaction	no reaction		
		Y ₂	X ₂ formed	no reaction	Z ₂ formed		
		Z ₂	X ₂ formed	no reaction	no reaction	[2]	
	With	reference	to the table above	, identify the haloge	ns X, Y and Z. Expla	in your	

reasoning.

	 Y₂ displaces (oxidises) both X⁻ and Z⁻ from solution, hence it must be the strongest oxidising agent, C_{l2} (or Y⁻ is the weakest reducing agent). X₂ cannot displace (oxidise) Y⁻ and Z⁻ from solution, hence it must be the weakest 	
	oxidising agent, I_2 (or X^- is the strongest reducing agent). Therefore, Z_2 is Br_2 .	
(e)	A glass rod was heated in a Bunsen burner flame and placed into a jar of hydrogen chloride gas. The experiment was repeated using a jar of hydrogen iodide gas. A colour change was observed in one of the samples.	
	Using relevant data from Data Booklet, explain these observations.	[3]
	The sample with HI will give a colour change.	
	Bond energy of $HCl = 431 \text{ kJ mol}^{-1}$	
	Bond energy of HI = 299 kJ mol ⁻¹	
	The thermal stability of hydrogen halides decreases down the Group due to decreasing H–X bond energy. The <u>I atom is larger than the Cl atom</u> and its valence orbitals are more diffuse. This results in <u>less effective overlap</u> between the small H atom and the larger I atom and <u>less energy is required</u> to break the weaker H–I bond, <u>forming H₂ and (violet fumes) of I₂</u> , accounting for the colour change.	
	[Total:	20]

Nitrous acid, HNO₂, is a weak monoprotic acid. HNO₂ is unstable and decomposes readily. It can be prepared by acidification of aqueous solutions of potassium nitrite with a mineral acid. The acidification is usually conducted at ice temperatures, and the HNO2 is consumed in situ. An equilibrium exists as follows. $H^+(aq) + NO_2^-(aq) \rightleftharpoons HNO_2(aq),$ $K_c = 1.66 \times 10^3 \text{ mol}^{-1} \text{ dm}^3$ (a) Calculate the value of the acid dissociation constant, K_a , of HNO₂. [1] $HNO_2(aq) \rightleftharpoons H^+(aq) + NO_2^-(aq)$ Ka $= 1 / K_c$ $= 1 / 1.66 \times 10^3$ $= 6.02 \times 10^{-4} \text{ mol dm}^{-3}$ A solution of HNO₂ was prepared by mixing equal volumes of 0.40 mol dm⁻³ (b) HCl(aq) with 0.40 mol dm⁻³ KNO₂(aq). Calculate the pH of this solution. [2]

		Initia	al concentration of HNO ₂ (aq) after mixing						
			<mark>40 / 2</mark> 20 mol dm ^{-3.}						
			$[H^+] = \sqrt{(6.02 \times 10^{-4})(0.20)}$						
		•	$0.97 \times 10^{-2} \text{ mol dm}^{-3}$						
		pH = - ç = 1.9	g (1.097 × 10 ⁻²) 9 <mark>6</mark>						
((c)		culate the pH of the aqueous mixture when 10.0 cm 3 of 0 mol dm $^{-3}$ HC l (aq) is added to 30.0 cm 3 of 0.400 mol dm $^{-3}$ KNO $_2$ (aq).	[2]					
			$\frac{O_2}{O_0} \times 0.400 / \frac{40}{1000}$ 100 mol dm ⁻³						
			$\frac{2^{-1}}{\frac{1}{00}} \times 0.400 / \frac{40}{\frac{1000}{1000}}$ 200 mol dm ⁻³						
		pH = pH =	er calculation = $pK_a + lg\frac{[salt]}{[acid]}$ = $-lg(6.02 \times 10^{-4}) + lg(\frac{0.200}{0.100})$						
	/ IN	•	= <mark>3.52 [1]</mark>						
	(d)	Gas	eous nitrous acid decomposes into nitrogen dioxide, nitric oxide, and wat $2HNO_2 \rightarrow NO_2 + NO + H_2O$	er:					
		(i)	Draw the dot–and–cross diagram of NO ₂ .						
			Explain the difference in bond angles in H ₂ O and NO ₂ .	[2]					
			× O O O O O O O O O O O O O O O O O O O						
			NO ₂						
			In water, the H–O–H bond angle is <u>smaller</u> than the O–N–O bond angle as the <u>lone electron on N</u> in NO ₂ exerts <u>weaker lone electron–bond pair repulsion</u> as compared to the <u>2 lone pairs of electrons on O</u> in H ₂ O.						
		(ii)	Calculate the increase in pressure when 2.00 g of HNO ₂ decomposes under 1 atm and 150 °C in a 1 dm ³ container.	[2]					

		Molar mass of HNO ₂ = 47.0 g	mol ^{–1}				
		Amount of HNO ₂ = $\frac{2.00}{47.0}$ = 4.25	<u> </u>				
	Increase in number of moles of gases						
	$= (3-2) \times 4.255 \times 10^{-2} \times 1/2$						
		$= 2.128 \times 10^{-2} \text{ mol}$					
		Increase in pressure					
		$=\frac{nRT}{V}$					
		$= \frac{(0.02128)(8.31)(150+273)}{}$					
		$\frac{0.001}{0.004}$ = 7.48 × 10 ⁴ Pa					
	<u> </u>						
(e)		lar to HNO ₂ , 3–chloropropano					
		npounds E and F are constituti					
		en the same amount of 3-chlor arate portions of water of equal					
		values as shown in the table be					
				-			
		compound	pH of aqueous solution				
		3-chloropropanoic acid	2.3				
		E	1.9				
		F	1.0				
	the	gest structural formulae for coldifference in pH values of the	ne three solutions obtained.				
	com	pounds has the structure of R-	-O-R.		[4]		
		2-chloropropanoic acid					
	F is (CH3−O−CH2COC <i>l</i>					
		aqueous solution of E has a because E is a stronger	· · · · · · · · · · · · · · · · · · ·				
	<mark>elect</mark>	tron-withdrawing –Cl atom	is <u>nearer to</u> the -CO ₂ -	<mark>group in</mark>			
		CH ₂ C <i>l</i> CO ₂ ⁻ . Thus, the negative persed and this ion is more sta	S Comments				
		aqueous solution of F has a lov					
		ause F reacts with water to ng acid.	produce <u>hydrochloric acid</u> ,	which is a			
	3110	ng acia.					

(f)		anedioic acid, a diprotic acid, can be synthesised from cindialdehyde by the following synthesis pathway. Step 1 OH Step 4 Ho OH Step 3 K Hexanedioic acid	
	(i)	Suggest reagents and conditions for each of the Steps 1, 2 and 3.	[3]
		Step 1: LiA <i>l</i> H ₄ in dry ether Step 2: (dry) PC <i>l</i> ₅ Step 3: ethanolic KCN, heat under reflux	
	(ii)	Suggest the structures for K and L .	[2]
		CI NC CN L	
(g)		ponyl compounds can undergo the Aldol reaction under basic conditions. mechanism is shown below.	

	ep 2 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_9	
	R_1 , R_2 , $R_3 = H$, alkyl or aryl	
(i)	Suggest the structure of the compound formed from the Aldol reaction between 1 molecule of succindialdehyde and 1 molecule of methanal.	[1]
	DH OH	
(ii)	 Compound M is a compound with 8 carbon atoms and undergoes the following reactions. M gives an orange precipitate with 2,4–DNPH. M does not react with Tollen's reagent. M reacts with alkaline aqueous iodine to give a yellow precipitate and product N, C₇H₅O₂⁻. M undergoes Aldol reaction to form O, C₁₆H₁₆O₂, under basic conditions. 	
	Suggest the structures for M , N and O .	[3]

	(ii)	State the type of reaction which occurred in reaction I and write an equation for the reaction.	[2]
		type of reaction: ligand exchange	
		equation : $[Fe(H_2O)_6]^{3+} + 6CN^- \rightarrow [Fe(CN)_6]^{3-} + 6H_2O$	
	(iii)	Write an equation for reaction II.	[1]
		$[Fe(CN)_6]^{3-} 6H^+ + 6H_2O \rightarrow [Fe(H_2O)_6]^{3+} + 6HCN$	
	(iv)	Given that $C_2O_4{}^{2-}$ is a bidentate ligand, draw the structural formula of the complex formed.	[1]
(b)	prope of dilu mang	manganese is an alloy added to steels to improve their mechanical erties. A 15.0 g sample of ferromanganese was dissolved in 250 cm ³ ute sulfuric acid to give an solution containing iron(II) sulfate and anese(II) sulfate. 25.0 cm ³ of the resulting solution required 20.0 cm ³ 0360 mol dm ⁻³ of potassium manganate(VII) solution for complete on.	
	(i)	By using the <i>Data Booklet</i> , construct a balanced equation for the reaction between resulting solution and potassium manganate(VII) solution.	[1]
		$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$	
	(ii)	Calculate the percentage by mass of iron in ferromanganese.	[3]
		amt of MnO ₄ ⁻ = $\frac{20.0}{1000}$ ×0.036 = 7.20 × 10 ⁻⁴ mol	
		amt of Fe ²⁺ in 25 cm ³ = $7.20 \times 10^{-4} \times 5 = 3.60 \times 10^{-3}$ mol	
		amt of Fe ²⁺ in 250 cm ³ = $3.60 \times 10^{-3} \times \frac{250}{25} = 3.60 \times 10^{-2}$ mol	
		mass of Fe in sample = $3.60 \times 10^{-2} \times 55.8 = 2.009 \text{ g}$	

	% of Fe in sample = $\frac{2.009}{15} \times 100\% = 13.4\%$	
(c	Neutral FeC <i>l</i> ₃ remain yellow when reacted with compound S , C ₁₁ H ₁₀ O ₃ . S gives a silver mirror with silver diammine complex. However, S does not give a precipitate with hot alkaline Cu ²⁺ solution. S is heated with acidified KMnO ₄ for several hours to give benzene–1,2,3–tricarboxylic acid as the one of the organic products. When heated with NaOH(aq) followed by acidification, S forms T , C ₁₁ H ₁₂ O ₄ . T reacts with alkaline aqueous iodine to give yellow precipitate. S reacts with NaBH ₄ to give U , C ₁₁ H ₁₂ O ₃ . Suggest the structure for S , T and U . Explain the reactions described.	[9]
	S does not react with neutral FeCl₃ ⇒ phenol is not present In S, the C:H ratio is 1:1 ⇒ benzene is present S undergoes oxidation with silver diammine complex ⇒ aldehyde is present S does not undergoes oxidation with Cu²+ ⇒ aromatic aldehyde is present S undergoes oxidation with hot acidified KMnO₄ to give benzene-1,2,3-tricarboxylic acid as the only organic product. ⇒ substituents of benzene ring are on 1,2,3 position S undergoes alkaline hydrolysis to form T ⇒ S is a cyclic ester/ester bond present ⇒ T contains a carboxylic acid and an alcohol T undergoes a oxidation/ positive iodoform test ⇒ T has -CH₃CH(OH) group S undergoes reduction with NaBH₄ to for U ⇒ primary alcohol is formed	
	S O OH U OH U O	

RV RV

14

Section B Answer one question from this section.

				1				
4	(a)	metal	ine earth metals, also known as Group 2 elements are highly llic and are good conductors of electricity. They have a grey-white when freshly cut but tarnish readily in air.					
		(i)	(i) Describe and explain the trend in thermal stability of the Group 2 carbonates.					
			Down the Group, the <u>radius of the metal cation</u> , M ²⁺ , <u>increases</u> and its <u>charge density decreases</u> . As a result, the ability of M ²⁺ to polarise the electron cloud of the large CO ₃ ²⁻ anion decreases and the <u>C-O bonds are polarised and weakened to a smaller extent</u> . Hence <u>thermal stability of the Group 2 carbonates increases down the Group</u> .					
		(ii)	When ozone (O ₃) is passed over dry powdered BaO at `10°C, barium ozonide, Ba(O ₃) ₂ , is formed as a red-brown solid.					
			Adding water to the solid and warming to room temperature causes a reaction to occur. Oxygen gas is produced and an alkaline solution is left.					
			Write a balanced equation for the reaction between barium ozonide and water.	[1]				
			$Ba(O_3)_2(s) + H_2O(I) \rightarrow Ba(OH)_2(aq) + 5/2O_2(g)$					
		(iii)	Suggest a suitable temperature to produce calcium ozonide by passing ozone through powdered CaO.					
			Accept any temperature lower than `10°C					
	(b)		e is usually produced by passing oxygen gas through two highly- ged electrical plates.					
			$3O_2(g) \rightarrow 2O_3(g)$					
			The reaction does not go to completion and a mixture of gases will be produced.					
		The concentration of O ₃ in the mixture can be determined by its reaction with aqueous KI.						
			$O_3 + 2KI + H_2O \rightarrow I_2 + O_2 + 2KOH$					
			iodine formed can be estimated by its reaction with sodium ulfate.					
			$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$					
	•							

	When 300 cm³ of an oxygen/ozone gaseous mixture at s.t.p. was passed into an excess of aqueous KI, and the iodine titrated, 24.0 cm³ of 0.100 mol dm ³ Na ₂ S ₂ O ₃ was required to discharge the iodine colour.		
(i) Suggest a suitable indicator can be used in the titration and state the colour change at end point.			
		Starch solution. Blue-black to colourless.	
	(ii)	Calculate the percentage of O ₃ in the gaseous mixture.	[2]
		$I_2 \equiv 2S_2O_3^{2-}$	
		$n_{\rm I_2} = (0.100 \times 24.0 \div 1000) \div 2 = 1.200 \times 10^{3} \text{mol}$	
		$n_{\rm O_3} = n_{\rm I_2} = 1.200 \times 10^{3} \rm mol$	
		total amount of gas = 300 ÷ 22700 = 0.01322 mol	
		% of $O_3 = (1.200 \times 10^{3} \div 0.01322) \times 100\% = 9.08\%$	
	Ozone adds rapidly to alkenes at low temperature to give cyclic intermediates, called molozonides. Once formed, molozonides then rapidly rearranges to form ozonides. The reaction scheme is shown below. R1 CH2Cl2, -78°C Step I R1 Ozonide		
		molozonide Step III Zn $CH_3CO_2H(aq)$ R_1 $C = 0$ R_2 $C = 0$	
	The re	eaction can also be expressed as	
		$C = C$ R_3 $C = C$ C C C C C C C C C	
		-	
	(i)	State the type of reaction occurring in Step I of the reaction scheme.	[1]
		Oxidation/ Electrophilic Addition	
	(ii)	Suggest the role of zinc in the reaction scheme.	[1]

		Reducing agent	
	(iii)	β -Damascenone is a chemical compound found in whisky, which is an alcoholic liquor. Also known as rose ketones, β -damascenone is a key compound that contributes a floral note to whisky.	
		β-damascenone	
		Predict the organic products formed when β -damascenone reacts with ozone as shown by the reaction scheme above.	[3]
(d)	affect aldeh	from β -damascenone, whisky contains an array of compounds that its taste and flavour, which include phenolic compounds, ydes and esters. The use of different grains, distillation process and used in the ageing process can also change the flavour profile.	
	(i)	Phenolic compounds in general contributes smoky flavours and bitterness in whisky. In Scotch whisky, the use of peat fires to dry the barley grains creates a class of medicinal-smelling compounds known as cresols. Cresols exists as constitutional isomers with the formula C ₇ H ₈ O. When added to aqueous bromine, rapid decolourisation followed by the formation of a white precipitate is observed for all isomers of cresol.	
		Draw all the possible isomers of cresol.	[3]

		OH OH CH ₃ CH ₃	
	(ii)	Whisky lactones are responsible for the woody, spicy and coconut flavour notes. One such compound is trans-3-methyl-4-octanolide. A student wanted to synthesise an amide from this lactone.	
		trans-3-methyl-4-octanolide The following steps were proposed. 1. heat with dilute H ₂ SO ₄ 2. addition of ethylamine Comment on the feasibility of this reaction scheme.	[2]
		The reaction scheme is not feasible. The hydrolysis of ester in (1) will result in the formation of a carboxylic acid that will undergo an acid-base reaction with ethylamine rather than a condensation reaction.	
	(iii)	Esters in whisky can also contribute fruity flavours such as ethyl hexanoate, which imparts a sweet apple flavor, and isoamyl acetate, which gives a banana aroma. ethyl hexanoate ethyl hexanoate isoamyl acetate	

	Describe a simple chemical test that can be used to distinguish ethyl hexanoate from isoamyl acetate.	[2]
	State any observations you would make with each compound.	
	(1) Aqueous NaOH, heat	
	(2) Aqueous (alkaline) iodine, warm	
	Pale yellow ppt will be observed for ethyl hexanoate (due to formation of ethanol). No pale yellow ppt will be observed for isoamyl acetate.	
(iv)	Whisky is a mixture of water, ethanol and organic compounds like whisky lactones. When the alcoholic whisky is stored for a long period of time, as the ethanol content decreases, a cloudiness can be observed in the whisky.	
	Suggest a reason why the cloudiness occurs.	[1]
	As the ethanol is evaporated, the chemical compounds can precipitate, giving rise to cloudiness.	
	[Total	l: 20]

5		Cyclopropane is an explosive, colourless gas that was discovered by August Freund in 1881, and was once used as a general anesthetic in clinical practice.						
	(a)	(a) Cyclopropane can undergo isomerisation to propene at 298 K.						
		Table 5.1						
		ΔH / kJ mol $^{-1}$						
		standard enthalpy change of formation of CO ₂ (g)	-394					
		standard enthalpy change of formation of H ₂ O(I)	-286					
		standard enthalpy change of combustion of cyclopropane	-2091					
	Using the data given above and in Table 5.1, construct a suitable energy cycle and calculate the enthalpy change of formation of propene at 298 K.							

(c)	(i)	State the conditions needed to produce chlorocyclopropane as the major product.	[1]
		limited Cl2, uv, (excess cyclopropane)	
	(ii)	Describe the mechanism for this reaction.	[3]
		Initiation $C_{I} \longrightarrow C_{I} \longrightarrow C$	
	by-pro	orocyclopropane, C ₃ H ₃ C _{l₃} , is one of the possible polysubstituted oducts of the reaction under a different set of conditions. ri-substituted cycloalkane can exist as 3 constitutional isomers, all ich exhibit stereoisomerism.	
	(iii)	Define the term stereoisomerism.	[1]
		Stereoisomerism is a type of isomerism in which molecules have the same molecular and structural formulae, but differ in the spatial arrangement of their atoms.	
	(iv)	Draw the structures of the 3 isomers of trichlorocyclopropane and suggest the type of stereoisomerism associated with each of them.	

		Note: You may refer to the diagram of cyclopropane shown below				
		to draw the isomers accordingly.				
			[4]			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		cis-trans isomerism cis-trans isomerism enantiomerism				
(d)	reacti struct	However, in the absence of uv light, cyclopropane can undergo addition reactions similarly as alkenes. This leads to the opening of the ring structure. For example, HBr Br				
	(i) Suggest a possible reason why cyclopropane can undergo addition reactions, unlike aliphatic alkanes.					
	Cyclopropane is highly unstable due to the <u>ring strain</u> , as the bond angles in the ring are at 60°, rather than 109.5° for sp ³ carbons.					
	Propane can be produced from cyclopropane in a three-step synthesis as shown below. Suggest the reagents and conditions you would use for steps 2 and 3, and identify the intermediates P and Q .					
		step 1 step 2 step 3	[4]			

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
(e)	A possible amino acid derivative of cyclopropane is shown below.			
	H ₂ N COOH			
	HOOC			
	Draw the structure of the zwitterion formed by this amino acid derivative.	[1]		
	HOOC COOT			
	[Total	l: 20]		