

'O' Level Science Chemistry Quick Revision Notes

• To check purity of a substance

- Determine melting or boiling points (the only method)

Common Chemicals

Common Name	Chemical Name	Common Name	Chemical Name
Limestone	Calcium carbonate	Lime / quick lime	Calcium oxide
Limewater	Calcium hydroxide	Aqueous Ammonia	Ammonium hydroxide

Colour of some substances

Colour	Substances	Colour	Substances
White	Group I, II and III, ammonium	Black	CuO (s), l ₂ (s)
	compounds, Anhydrous CuSO ₄	Shiny/grey	Most metals
Yellow	Pbl, Agl, hot ZnO,	Blue	Cu ²⁺ salts
	Fe ³⁺ (aq)		
Red-brown	Br ₂ (<i>I</i>),	Green	Fe(OH) ₂ (s), some Cu ²⁺ salts
	Copper Metal, Fe(OH) ₃ (s)		Fe ²⁺ (aq), Cr ³⁺

1. Separation techniques

Method	Substance to separate	Substance(s) obtained	Concept behind method	Remarks
Filtration	 Insoluble solid from a liquid. Soluble solid & insoluble solid 	Filtrate Residue (Solid)	 Different solubility in the liquid 	 Large insoluble solid trapped by filter paper
Decanting	Large insoluble solid from liquid.	-	Large insoluble solid	-
Evaporate to dryness	A soluble solid from a liquid.	Dry / anhydrous salt	 Different physical states 	 Not for solids that decompose on heating
Crystallisation	 A pure solid from an impure solid. A soluble solid from a liquid. Substances which decompose. 	Well-formed crystals of the pure solid (solute)	 As temperature decreases, solubility decreases. When saturated solution is cooled, crystals are formed. 	 For solids that decompose on heating To retain water of crystallisation (hydrated salt)
Sublimation	A mixture of solids which one of them sublimes.	Pure solid which sublimes.	 One substance changes directly from solid to vapour on heating. 	 E.g. iodine, moth balls, dry ice.
Simple distillation	A solution of a dissolved solid (solute) in a liquid.	Pure liquid as distillate.	 Different physical states 	 Liquid is heated into vapour, cools and condenses into pure liquid in condenser and collected as distillate.
Fractional distillation	Mixture of miscible liquids	Pure liquids as distillate.	 Difference in boiling point 	 Uses a fractionating column. Liquid with the lower bp will be distilled out first.
Separating funnel	Mixture of two immiscible liquids.	Two separated liquids	 Difference in densities 	 Mixture separates into two layers
Paper chromatography	Solution containing mixture of small amounts of solids	Solutes separated in the chromatogram.	 Different solubility of solutes in the solvent used 	 More soluble solutes travel a longer distance with solvent.

•

2. Particulate Nature of Matter

- Kinetic Particle Theory of Matter
 - Particles are too small to be seen directly
 - There are **spaces** between particles
 - Particles are in constant random motion; move in different speeds in different states
 - showed in Diffusion

• Rate of diffusion depends on molecular mass and temperature

• Particulate models of matter in different state

- Describes the arrangement and motion of particles

Physical State	Solid	Liquid	Gas
Arrangement	Orderly, closely packed	Disorderly, closely packed	Disorderly, far apart
Motion	Vibrate about fixed position	Slide pass one another	Free to move at high speeds in all direction

- Temperature of a matter is due to the speed/kinetic energy of the particles within it.
- Matter expands due to the increase in distance between its particles.
- Matter may be coloured but its particles are not coloured.

3. Element, Compound and Mixture

	Element	Compound	Mixture	
Definition	 Pure substance Cannot be broken down into simpler substances by chemical means. 	 Pure substance Contains two or more different elements chemically combined together. 	 Contains two or more substances that are not chemically combined together. 	
Classification by	Physical statePeriodic Table	 Types of bonding (Covalent / Ionic / Both) 	Mixture of elementsMixture of compounds	
lt can exist as	Atoms (smallest unit)Molecules (in covalent bonding)	 Molecules (covalent compound) Ions (ionic compounds) 	 Mixture of both elements and compounds. 	
Composition	 Fixed composition 	 Fixed composition of the elements by mass. 	 Variable composition. 	
Melting and boiling points	 Fixed 	■ Fixed	 Variable (A range of temperature) 	
Properties	 Own characteristic physical and chemical properties. 	 Physical and chemical properties are different from its elements. 	 Does not have its own properties. Has same properties as its components. 	
Formation	-	 Involves energy changes for chemical reaction to occur 	 Mixing with no energy required 	
Separation	 Cannot be separated or broken down further. 	 Cannot be separated by physical means. Requires energy (usually involves decomposition) 	 Easily separated into its components by physical means without chemical reaction Involves little or no energy 	

4. Atomic structure

Subatomic	Symbol	Relative	Charge
particle		mass	
Proton	р	1	1+
Neutron	n	1	0
Electron	e⁻	$\frac{1}{1840}$	1-

For 1st 20 elements After the 20th element, 3rd shell can actually hold up to 18 electrons

- Atom
 - electrically neutral
 - equal no. of protons and electrons
- Isotope
 - atom of the same element but with different no. of neutrons
- Electronic configuration
 - shows the arrangement of electrons in an atom

***All atoms wanted to obtain a stable electronic configuration of a noble gas.

Therefore,

- 1) Atoms of the same element react to form molecules (by sharing valence electrons), OR
- 2) Different elements react to form stable compounds (by gain or lose valence electrons OR share valence electrons)

5. Chemical Bonding, Structure and Properties

	Ionic Bonding	Covalent Bonding
Definition	Strong electrostatic force of attraction between oppositely charged ions	Bond formed by the sharing of at least one pair of valence electrons between atoms
Formation of bond	 By electron transfer from metals to non- metals Metal atom loses e⁻ while non-metals gain e⁻ 	 By electron sharing among atoms Non-metals share electrons No. of pairs of shared e⁻ = No. of covalent bonds
Description of particles formed	 Positive and negative ions Simple ions/Polyatomic ions 	Between atoms of same elementBetween atoms of different elements (compound)
Structure	 Giant lonic Lattice Large number of oppositely charged ions arranged in a repetitive, orderly manner, held in place by strong ionic bonds 	Simple Molecular Structure Small molecules Strong covalent bond within molecule Weak intermolecular forces of attraction between molecules

Dot and cross diagrams to show bonding

Ionic Bonding (MgCl₂)

Physical Properties of Different Structures

- Physical state / appearance depends on
 - type of bonding or attraction between particles in the substance
 - the arrangement of particles in the substance
- Melting and boiling point depends on
 - amount of energy required to overcome attraction
 - type and strength of bonding or attractive forces to be overcome / broken
- Volatility depends on boiling point
- Solubility depends on whether the particles can / cannot attract the solvent molecules
- Electrical conductivity
 - can conduct if there are mobile ions / electrons in the substance

	Giant Ionic Lattice	Simple Molecular Structure
Physical state	 Crystalline solid Flat sides and Regular shape Hard 	 Most are liquids or gases at room temp
Melting and boiling points	High m.p. and b.p.: - Large amt of energy needed to overcome many strong electrostatic forces of attraction between oppositely charged ions	Low m.p. and b.p.: - Low energy needed to overcome weak intermolecular forces of attraction between molecules
Volatility	Not volatile: Strong ionic bonds hold the ions together	Volatile and evaporate easily to give a smell
Solubility	 Soluble in water, giant lattice breaks down and ions are mobile Insoluble in organic solvent 	Most are insoluble in water.Dissolves in organic solvent.
Electrical conductivity	 Cannot conduct in solid ions are in fixed position Can conduct in molten or aqueous as ions are mobile 	 Do not conduct electricity at all molecules contain no mobile ions or e⁻

Note: Not all ionic compounds are soluble in water!!! e.g. PbSO4

6. Mole Concept and Calculation

Relative atomic mass – **average mass** of one atom compared to the mass of 1/12 of a carbon-12 atom Relative molecular mass – average mass of one molecule compared to the mass of 1/12 of a carbon-12 atom One mole of a substance contains **6 x 10²³** particles. (Particles can be atoms, molecules, ions or even electrons)

- Molar mass mass of 1 mole of any substance (in g/mol)
- Percentage composition % by mass of each element present in a compound
- Avogadro's law all gases with 1 mole of particles have equal volumes at the same temperature and pressure
 – Molar gas volume at r.t.p.= 24 dm³/mol
- Concentration of Solutions the amount of solute per unit volume of the solution
 - g/dm³ or mol/dm³ or molarity (M)
- Balanced Chemical Equations
 - gives molar ratio or volume ratio of reactants and products
- Limiting reactant limits the amount of products formed Empirical formula – shows the ratio of the type of atoms present Molecular formula – shows the actual number and type of atoms present Structural formula – shows how atoms are joined in the molecules

7. Periodicity

Elements in same **Period** – same number of **shells** Elements in same **Group** – same number of **valence electrons**

- Transition metals
 - variable oxidation states, form coloured compounds, used as catalyst
 - high mp and high densities

Group I: Down the group,

valence electron further away from positive nucleus

$$\downarrow$$

attraction is weaker \Rightarrow easier to lose valence electron \Rightarrow more reactive

$$\Downarrow$$

Weaker metallic bonding \Rightarrow **MP decreases**

Group VII: Down the group,

valence shell further from nucleus $\$ \Downarrow more difficult to attract one electron $\$ \Downarrow

less reactive

8. Metals

- Good conductor of Heat and Electricity
- Malleable, Ductile [hence, pure metals are usually soft and weak]
- Most of them have high mp, bp and density
- Alloys
 - mixture of a metal with other elements
 - atoms of different sizes disrupts the orderly arrangement of atoms
 - layers are more difficult to slide and thus stronger and harder than pure metals

Extraction method	Reactivity	Metal	Cold water/ Steam	Hydrochloric acid	Metal oxides with Carbon	Metal oxides with hydrogen	Heat on metal carbonates
Electrolysis	Most reactive High tendency to lose valence	Potassium Sodium	React with cold water	Decreasing	Carbon cannot	Hydrogen cannot	Do not decompose when heated
of metal ores	electrons. <i>More reactive</i>	Calcium Magnesium Aluminium	React	reactivity. Less vigorous	oxygen from their oxides	remove oxygen from their oxides	
Heat metal oxides with	displaces the less reactive metal from its	Zinc Iron Tin		reaction.	Carbon can	Hydrogen	of decomposition
carbon (Cheap coke)	ions and oxide	Lead		very slow even with warm acid	remove oxygen from their	oxygen from their oxides	carbonate.
Heat metal	Least reactive	Copper Mercury	NO reaction		oxides with increasing ease	with increasing ease.	less stable to
oxide Found as element	Low tendency to lose valence electrons.	Silver Gold		NO reaction		\rightarrow	\downarrow

Exceptions

- Aluminium seemed to have **no** reaction with acid / steam
 due to a protective layer of **aluminium oxide**
- When lead react with HCl(aq) or H₂SO₄(aq), reaction stops as soon as it begins
 a layer of **impervious** (**insoluble**) PbCl₂ or PbSO₄ is formed
- Extraction of Iron
 - from haematite, Fe₂O₃
 - with coke, limestone, blast of hot air
 - the extracted iron is used to make steel
- Steel
 - alloy of iron and other elements
 - mild steel, hard steel, stainless steel
- Rusting of Iron / Steel
 - Rust: hydrated iron (III) oxide
 - Require presence of **both** water and oxygen
 - Prevention of rusting by surface protection or sacrificial protection

1.
$$C(s) + O_2(g) \rightarrow CO_2(g) + Heat$$

2. $CO_2(g) + C(s) \rightarrow 2CO(g)$
3. a) $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g)$
b) $Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(l) + 3CO(g)$
4. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
5. $SiO_2(s) + CaO(s) \rightarrow CaSiO_3(l)$
Remove impuritie

9. Acids, Bases and Salts

Acids	Alkalis
 produces H⁺ ions when dissolved in water 	 produces OH⁻ ions when dissolved in water
Sour taste	 Bitter taste and slippery feel
Turn blue litmus red	Turn red litmus blue
• pH < 7	• pH > 7
 Conducts electricity (electrolytes) 	Conducts electricity (electrolytes)
Chemical Pro	operties / Reactions
1. Acid + Reactive Metals \rightarrow Salt + Hydrogen gas	1. Alkalis + Acids \rightarrow Salt + Water
2. Acids + Carbonates	2. Alkalis + Ammonium compounds
\rightarrow Salt + Water + Carbon	\rightarrow Salt + Water +
dioxide gas	Ammonia gas
3. Acids + Metal oxides \rightarrow Salt + Water	2. Departies with colutions of motol ions to form a
OR, Acids + Metal hydroxides \rightarrow Salt + Water	5. Reaction with solutions of metal ions to form a
4. Acids + Alkalis \rightarrow Salt + Water	* This reaction is used as a test to identify metal ions
H^+ (aq) + OH ⁻ (aq) \rightarrow H ₂ O (I)	

• Concentration depends on the amount of solute dissolved in a solution

Strength \neq Concentration

Red	Orange	Yellow	Green	Blue	Indigo	Violet
рН:0 ┥			7			<u> </u>
Most acidic			Neutral			Most alkaline
Strong acids			Pure water			Strong alkalis
High H⁺ ion co	ncentration				Low H	⁺ ion concentration
Low OH ⁻ ion co	oncentration				High O	H ⁻ ion concentration

Oxides

Type of oxide	Examples	Reactions
Basic	Metallic oxides [except ZnO, Al ₂ O ₃ , PbO]	React with acids to form salt and water
Amphoteric	Z nO, A l ₂ O ₃ , P bO	React with both acid and alkali to form salt and
		water
Neutral	H ₂ O, NO, CO	No reaction with acid and alkali
Acidic	Non-metal oxides [except H ₂ O, NO, CO]	React with alkalis to form salt and water

Solubility table

Type of compounds	Insoluble	Soluble
Oxides	All except	Group I and Ammonium
Hydroxides	All except	Group I and Ammonium [Ca(OH) ₂ sparingly soluble]
Carbonates	All except	Group I metal and Ammonium
Sulfates	Calcium, Barium, Lead	The rest
Chlorides (Halides)	Silver, Lead	The rest
Nitrates	None	All
Group I and Ammonium	None	All

Preparation of Salts

	Titration	React acid with EXCESS insoluble	Precipitation
		substances	
Solubility of salt	Soluble	Soluble	Insoluble
Type of salt	Group I and Ammonium salts	Soluble salts [except Group I and Ammonium salts]	All insoluble salts
Solubility of starting material	Two aqueous solutions	One aqueous solution and One insoluble substance in excess	Two aqueous solutions
Starting material	Acid + Alkali Acid + Soluble carbonates	Acid + Reactive metals Acid + Insoluble metal oxides/hydroxides Acid + Insoluble carbonates	One solution containing the required cation and One solution containing the required anion
Examples	<u>To prepare NaCl</u> HCl (aq) + NaOH (aq) → NaCl (aq) + H₂O (I)	$\frac{To \text{ prepare } Cu(NO_3)_2}{2HNO_3 \text{ (aq)} + CuO \text{ (s)}}$ $\rightarrow Cu(NO_3)_2 \text{ (aq)} + H_2O \text{ (l)}$	<u>To prepare PbSO4</u> <u>Pb(</u> NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq) → PbSO ₄ (s) + 2NaNO ₃ (aq)
Steps	 Pipette alkali into flask Add indicator Pour acid into burette Add acid into flask until indicator change colour Record volume of acid and alkali added Repeat the titration without indicator Carry out crystallisation process on the resulting salt solution to obtain pure dry crystals 	 Add CuO into acid until some of it cannot dissolve Filter the mixture to remove excess CuO Collect the filtrate Carry out crystallisation process on the resulting salt solution to obtain pure dry crystals 	 Mix the two aqueous solution Filter the mixture Collect the residue Wash with distilled water Dry the salt between filter papers
Things to take note	Titration is repeated without indicator to ensure that it does not become impurities in the salt after crystallisation.	Excess insoluble substance must be added to ensure that all acid has reacted so that acid will not contaminate the salt after crystallisation.	

Identification of Cations

Cations	Aqueous NaOH	Excess Aqueous	Aqueous Ammonia	Excess Aqueous
		NaOH		Ammonia
Cu ²⁺	Blue ppt [Cu(OH) ₂]	ppt insoluble	Blue ppt [Cu(OH) ₂]	ppt soluble and form deep
				blue solution
Fe ²⁺	Green ppt [Fe(OH)2]	ppt insoluble	Green ppt [Fe(OH)2]	ppt insoluble
Fe ³⁺	Red-brown ppt	ppt insoluble	Red-brown ppt	ppt insoluble
	[Fe(OH)₃]		[Fe(OH) ₃]	
Ca ²⁺	White ppt [Ca(OH) ₂]	ppt insoluble	No ppt.	-
Z n ²⁺	White ppt [Zn(OH) ₂]	ppt soluble (reaction with NaOH)	White ppt [Zn(OH) ₂]	ppt soluble
A l ³⁺	White ppt [Al(OH) ₃]	ppt soluble (reaction with NaOH)	White ppt [Al(OH) ₃]	ppt insoluble
P b ²⁺	White ppt [Pb(OH) ₂]	ppt soluble (reaction with NaOH)	White ppt [Pb(OH) ₂]	ppt insoluble
NH ₄ +	No ppt. Ammonia gas formed when warmed		No ppt.	-

*Add magnesium/zinc to test for H⁺ ions.

Identification of Anions

Anions	Test	Observations
Nitrate [NO3-]	Add aq. NaOH, Al powder, warm	Effervescence. NH ₃ evolved turns moist red litmus blue
Carbonate	Add dilute HNO ₃ or HCI	Effervescence. CO ₂ evolved forms white ppt with
[CO ₃ ²⁻]		limewater
Sulfate [SO ₄ ²⁻]	Add dilute HNO ₃ and aq. $Ba(NO_3)_2$	White ppt [BaSO ₄] formed
Chloride [Cl ⁻]	Add dilute HNO ₃ and aq. AgNO ₃	White ppt [AgCI] formed
lodide [l-]	Add dilute HNO ₃ and aq. AgNO ₃	Yellow ppt [Agl] formed

Identification of Gases

Gases	Test	Observations
NO ₂	Moist blue litmus paper	Brown, irritating gas, turn moist blue litmus paper red
Cl ₂	Moist blue litmus paper	Yellowish green, irritating gas, turn blue litmus paper red and
		bleached
NH ₃	Moist red litmus paper	Colourless, pungent gas, turn moist red litmus paper blue
SO ₂	Acidified K ₂ Cr ₂ O ₇	Colourless, irritating gas, change acidified K ₂ Cr ₂ O ₇ from orange to
		green
CO ₂	Bubbled into limewater	Colourless, odourless gas, form white ppt [CaCO ₃] with limewater
H ₂	Lighted splint	Colourless, odourless gas, extinguish lighted splint with pop sound
O ₂	Glowing splint	Colourless, odourless gas, rekindles glowing splint

Test for Water

Substance	Test	Observations
Water	Blue cobalt (II) chloride paper.	Blue paper turns pink.

10. Redox Reactions

Oxidation	Reduction
 Gain oxygen 	Loss oxygen
Increase in oxidation state	 Decrease in oxidation state
Loss hydrogen	 Gain hydrogen
Loss electron	 Gain electron

Calculating oxidation states of elements / elements in a compound

Substance	Oxidation State	Substance	Oxidation State
Free elements	0	Hydrogen in a compound	+1, [except metal hydrides]
Sum of oxidation states of all elements in a compound	0	Oxygen in a compound	-2, [except H ₂ O ₂]
Simple ions	Charge on the ion	Group I elements in a compound	All +1
Sum of oxidation states of all elements in a polyatomic ion	Charge on the ion	Group II elements in a compound	All +2

Oxidising Agent	Reducing Agent
 Oxidises other substance Itself is reduced Used to test for reducing agents Example: Acidified aqueous potassium dichromate (VI), Chlorine, Acidified aqueous potassium manganate (VII) 	 Reduces other substances Itself is oxidised Used to test for oxidising agents Example: Aqueous potassium iodide, Reactive metals

11. Energy from chemicals

- Activation energy
 - the minimum energy needed to start a reaction
 - to break the bonds in the reactants before making new bonds
 - a 'barrier' which must be overcome before any reaction can start

Overall heat change of reaction, $\Delta H =$ (Total heat involved in bond breaking) + (Total heat involved in bond making)

12. Speed of Reactions

- Measuring speed of reactions by
 - measure change in volume of gas evolved over time
 - measure change in pressure of gas evolved over time
 - measure change in mass of reaction mixture over time

- Factors affecting speed of reactions
 - Concentration of solution
 - Pressure of gas
 - Particle size of solid
 - Temperature
 - Presence of catalyst

- The factors increase the speed of reaction by
 - Increasing frequency of collisions and/or
 - Increasing kinetic energy of the reacting particles

13. Atmosphere

Pollutant	Source	Harmful Effect	Solution
Sulfur dioxide	 Burning sulfur-containing fuels in power stations and industries S (s) + O₂ (g) → SO₂ (g) Volcanic eruption 	 Irritates eye Breathing problems Enters leaves and affect plant growth Main cause of acid rain 	Flue gas desulfurisation in power stations • Powdered limestone is added to the hot gases and decomposes $CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)$ $CaO (s) + SO_2 (g) \rightarrow CaSO_3 (s)$ $2CaSO_3 (s) + O_2 (g) \rightarrow 2CaSO_4 (g)$
Nitrogen oxides (NO _x)	 Lightning, Forest fires, Internal combustion engines Nitrogen and oxygen in air combines at high temperatures N₂ (g) + O₂ (g) → 2NO (g) 2NO (g) + O₂ (g) → 2NO₂ (g) 	 Irritate and damage lungs Forms photochemical smog A cause of acid rain 	 Fit catalytic converters to cars In the first half of converter: NOx react with CO as they pass through a (platinum) catalyst 2NO (g) + 2CO (g) → 2CO₂ (g) + N₂ (g) In the second half: Air enters and oxidises unburnt hydrocarbon and CO
Carbon monoxide [colourless, odourless]	 Forest fires Incomplete combustion of carbon containing fuels in motor engines, e.g. cars 	 Reduces ability of haemoglobin in blood to carry oxygen Causes breathing problems, headache and even death Forms photochemical smog 	to form CO_2 and water

Acid rain (pH <5) – any rainfall that has an acidity level beyond the acidity of non-polluted rainfall (pH 5.6)

– caused by sulfur dioxide and nitrogen dioxide

 $2SO_2\left(g\right)+O_2\left(g\right)+H_2O\left(g\right)\to H_2SO_4\left(\mathit{I}\right)$

 $4NO_2(g) + O_2(g) + 2H_2O(g) \rightarrow 4HNO_3(I)$

Effects of acid rain	Reducing effects of acid rain
 Make soil acidic ⇒ many plants cannot grow well Corrodes buildings and objects made of limestone Attacks metal ⇒ galvanised iron corrode faster Damages trees by leaching important nutrients from soil Acidic water kills fish and other aquatic life 	 Burn fuels containing little or no sulfur. E.g. use natural gas Use catalytic converters in cars Remove acidic gases in power stations Neutralise the acids in lakes with calcium carbonate and acidic soil with slaked lime (CaOH)

Carbon cycle – involves the processes: combustion, respiration and photosynthesis

Increase emission of carbon dioxide and methane gases increases greenhouse effect and global warming

Effects of Global Warming	Preventing effects of Global Warming
Seawater expands and sea levels rise	 Reduce usage of fossil fuels
Polar ice caps melt and sea levels can rise by over 20 m	Use more clean methods of producing electricity
 Big changes in global climate 	 Use of electric vehicles
\Rightarrow Floods and droughts, serious shortage of food	International agreements e.g. the Kyoto Protocol in 1997