Qn	Solution	Mark Scheme
1 (a)	$4ab^2$ b	M1 (for "×")
	$\frac{3}{3} \times \frac{2a^{-2}}{2a^{-2}}$	
	$2a^{3}b^{3}$	D 1
	$=\frac{-1}{3}$	BI
	5	
1(b)	$9^{(2x+1)} = 3^{-x}$	
	$2^{2(2x+1)} - 2^{-x}$	
	5 = 5	M1
	4x + 2 = -x	(base 3)
	$x = -\frac{2}{2}$	A1
	5	
1(a)	2 1	
1(c)	$x = \frac{2}{1} + \frac{1}{1}$	
	$x = \frac{2b+a}{1}$ $\frac{1}{1} = x - \frac{2}{1}$	
		M1 (remove denominator)
	$abx = 2b + a \qquad \qquad \frac{1}{2} = \frac{ax - 2}{abx}$	
	$b(ax-2) = a$ $b^{-}a$	
	$b = \frac{a}{b - \frac{a}{c}}$	AI
	$ax-2$ or $b=\frac{1}{ax-2}$	
1(d)	$4x^2 - 16$	M1 for
	$\overline{3x^2 - 5x - 2}$	4(x+2)(x-2)
	-4(x+2)(x-2)	
	$-\frac{1}{(3x+1)(x-2)}$	M1 for
	4(x+2)	(3x+1)(x-2)
	$=\frac{1}{3x+1}$	
		A1
1(e)	x - 2y = 10	M1
	2x - y = 8	Correctly eliminate 1
		variable.
	x = 2, v = -4	A1. A1
	Total for Q1	12 m

Serangoon Garden Secondary School 2021 Sec 4E/5NA Prelims P2 Suggested Mark Scheme

55		B1
x		
55		B 1
x-10		
$\frac{55}{x-10} - \frac{55}{x} = 1\frac{15}{60}$		M1 Accept mix number or improper fraction
60(55x - 55(x - 10)) = 75x(x - 10)		M1 remove denominator
$75x^2 - 750x - 33000 = 0$		A1
$x^2 - 10x - 440 = 0 (shown)$		
$x^2 - 10x - 440 = 0$		
$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(-440)}}{2(1)}$		B1
$x = \frac{10 \pm \sqrt{1860}}{2}$		
x = 26.563858 or $x = -16.563858$		D1 D1
$x \approx 26.6 \text{ (3sf)}$ or $x \approx -16.6 \text{ (3sf)}$		D1,D1
$\frac{55}{26.563858} + \frac{55}{26.563858 - 10} = 5.390964$		M1 Sub 26.563858 into correct expression
= 5 hours, 23.45789 mins		
\approx 5 hours, 23 mins		A1
	T () (O A	10
	Total for Q2	10 m
	$\frac{55}{x}$ $\frac{55}{x-10} = \frac{55}{x} = 1\frac{15}{60}$ $60(55x-55(x-10)) = 75x(x-10)$ $75x^2 - 750x - 33000 = 0$ $x^2 - 10x - 440 = 0 \text{(shown)}$ $x^2 - 10x - 440 = 0 \text{(shown)}$ $x^2 - 10x - 440 = 0$ $x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(-440)}}{2(1)}$ $x = \frac{10 \pm \sqrt{1860}}{2}$ $x = 26.563858 \text{ or } x = -16.563858$ $x \approx 26.6 (3sf) \text{ or } x \approx -16.6 (3sf)$ $\frac{55}{26.563858} + \frac{55}{26.563858 - 10}$ $= 5.390964$ $= 5 \text{ hours, } 23.45789 \text{ mins}$ $\approx 5 \text{ hours, } 23 \text{ mins}$	$\frac{55}{x}$ $\frac{55}{x-10}$ $\frac{55}{x-10} - \frac{55}{x} = 1\frac{15}{60}$ $60(55x-55(x-10)) = 75x(x-10)$ $75x^2 - 750x - 33000 = 0$ $x^2 - 10x - 440 = 0 \text{(shown)}$ $\frac{x^2 - 10x - 440 = 0}{2(1)}$ $x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(-440)}}{2(1)}$ $x = \frac{10 \pm \sqrt{1860}}{2}$ $x = 26.563858 \text{ or } x = -16.563858$ $x \approx 26.6 (3sf) \text{ or } x \approx -16.6 (3sf)$ $\frac{55}{26.563858} + \frac{55}{26.563858 - 10}$ $= 5.390964$ $= 5 \text{ hours, } 23 \text{ mins}$ $Total \text{ for } Q2$

3(a)(i)	Spinner 1 Spinner 2 $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 4 \end{array} $		B2 Minus 1 mark for each error.
3(a)(ii)	$\frac{1}{3} \leq 6$ P(sum more than 5) = $3\left(\frac{1}{2}\right)\left(\frac{1}{3}\right) = \frac{1}{2}$		$\mathbf{For} \mathbf{M1} \\ \mathbf{For} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \end{pmatrix} \\ \mathbf{A1} \end{pmatrix}$
3(b)	Let x be the initial no. of green balls $2\left(\frac{3}{x+3}\right)\left(\frac{x}{x+2}\right) = \frac{15}{28}$ $28(6x) = 15(x+3)(x+2)$ $15x^2 - 93x + 90 = 0$ $x = \frac{-(-93) \pm \sqrt{(-93)^2 - 4(15)(90)}}{2(15)}$		$M1 \frac{\left(\frac{3}{x+3}\right)\left(\frac{x}{x+2}\right)}{M1}$ remove denominator correctly M1
	$x = \frac{55 \pm \sqrt{3249}}{30}$ x = 5 or x = 1.2 (rej) Possible no. of initial green balls is 5.	Total for Q3	A1 8 m

	See Graph Paper	B1 All points plotted correctly
4(a)		B1 All points joined
		B1 Smooth Curve
		N/1
4(b)	By drawing the line $y=2$, the equation only has 1 solution because the line cuts the curve only at 1 point.	MI Draw $y = 2$ A1 "Line cuts curve at only 1 point"
		M1
		Draws acceptable tangent
4(c)	Mathematically calculated gradient = 1.25 .	at $(2,-0.5)$
4(0)	formula and calculate.	A1 (mark base on points chosen) Cannot give marks if negative gradient.
4(d)(i)	See Graph Paper	BI Cuts y-axis at 1 Or correct table of values
		B1
4(d)(ii)	x = -2.3, -0.6 and 2.9 But mark based on the graph drawn.	B1
4(d)(iji	$\frac{1}{2}x + 1 = \frac{1}{4}x(x^2 - 5)$	M1 Line = curve
)	$2x + 4 = x^3 - 5x$	
	$x^3 - 7x - 4 = 0 \text{(shown)}$	A1
	Mathematically calculated answer = $(-2, 0.5)$	B1
4(e)	But mark based on drawing a parallel tangent o the curve.	
	Total for Q4	13 m

5(a)	$P = 7M = \begin{pmatrix} 420 & 280 & 210 \\ 280 & 350 & 140 \end{pmatrix}$	B1
5(b)	$T = PN = \begin{pmatrix} 420 & 280 & 210 \\ 280 & 350 & 140 \end{pmatrix} \begin{pmatrix} 1.00 \\ 1.50 \\ 2.50 \end{pmatrix}$ (1365)	M1 for $\begin{pmatrix} 1.00\\ 1.50\\ 2.50 \end{pmatrix}$
	=(1155)	A1
5(c)	T represents the total cost to make caramel and strawberry cakes for the whole week respectively.	B1
5(d)(i)	$\begin{array}{c} \frac{6}{7} \begin{pmatrix} 420 & 280 & 210\\ 280 & 350 & 140 \end{pmatrix} \\ \begin{pmatrix} 360 & 240 & 180\\ 240 & 300 & 120 \end{pmatrix} \end{array}$	M1 for $\frac{6}{7}$
5(d)(ii)	=(240 300 120) (1.40)	Al
	Selling price = $\begin{pmatrix} 2.10 \\ 3.50 \end{pmatrix}$ $\begin{pmatrix} 360 & 240 & 180 \\ 240 & 300 & 120 \end{pmatrix} \begin{pmatrix} 1.40 \\ 2.10 \\ 3.50 \end{pmatrix}$ Sales = $\begin{pmatrix} 1638 \\ 1386 \end{pmatrix}$ $\begin{pmatrix} 1638 \\ - \begin{pmatrix} 1365 \\ - \begin{pmatrix} 273 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 273 \end{pmatrix}$	M1
	$ Profit = (1386)^{-}(1155)^{-}(231) Total Profit = 273 + 231 = $504 $	A1
	Total for Q5	8 m

6(a)(i)	49	<u>B1</u>
6(a)(ii)	6 <i>n</i> + 1	B1
6(a)(iii)	Let $6n + 1 = 256$	M1
	n = 42.5 Since n is not an integer, 256 is not part of the sequence.	A1 "Not an integer"
6(b)	$4^{th} term = 25$ $8^{th} term = 49$	
	A B $25cm^2: 49cm^2$ 5cm: 7cm $125cm^3: 343cm^3$	M1 for square root M1 for cube
	Volume of Cone B = $\frac{343}{125}(437.5) = 1200.5cm^3$	A1
	Total for Q6	7 m
7(a)	$\begin{aligned} &= \frac{134.8}{360} \pi (13)^2 - \frac{1}{2} (13)^2 \sin(134.8) \\ &= 138.8447 \approx 139 cm^2 \end{aligned}$	M1 Sector M1 Triangle M1 attempts to do (sector – triangle) A1
7(b)	$sin(67.4) = \frac{AM}{13}$ AM = 12.0017	M1
	$\cos(67.4) = \frac{OM}{13}$ $OM = 4.9958$	M1
	$k = \text{Gradient}_{OA} = \frac{OM}{AM} = \frac{4.9958}{12.0017}$	M1 (OM ÷ AM)
	$= 0.41625 \approx 0.4$ (1dp)	A1
	Total for Q7	8 m
8 (a)(i)	Angle $ABD = 90^{\circ}$ (angle in semi-circle)	M1
~~~~~	Angle $ADB = 180 - 90 - 60 = 30^{\circ}$	A1
<b>8</b> (a)(ii)	(angle sum of triangle)	M1
$\mathbf{U}(\mathbf{a})(\mathbf{H})$	Angle $EOF = 180 - 40 - 40$	<b>A</b> 1

	$=100^{\circ}$ (Base angles of isosceles triangle)	
8(a)(iii)	Angle ECF = $100 \div 2$	D1
	$=50^{\circ}$ (angle at centre - 2 angle at circumference)	<b>B1</b>
<b>8</b> (b)	$(EF)^2 = (10)^2 + (10)^2 - 2(10)^2(10)^2 \cos(100)$	M1
	$EF = 15.32088 \approx 15.3 \text{ cm}$	A1
	Total for Q8	7 m
9(a)	$AC = \sqrt{20^2 + 20^2} = 28.28427$	M1 (uses Pythagoras)
	$\Rightarrow AX = 14.142135$	
	$\tan(60) = \frac{EX}{EX}$	M1
	14.142135 EV = 24.49489 $\approx 24.5$ cm (shown)	
	$EA = 24.47467 \approx 24.3$ cm (Shown)	A1
9(b)	Let <i>L</i> be the slant height of pyramid	
	$L = \sqrt{24.49489^2 + 10^2} = 26.457506$	M1
	$SA = 20^2 + (4) \left( \frac{1}{2} (20)(26.457506) \right)$	M1 (attempts to add
		square + 4 triangles)
	$= 1458.300 \approx 1460 \text{ cm}^3$	A1
<b>9</b> (c)	1	M1
)(()	$=\frac{1}{3}(20^2)(24.49489)=3265.985$	1711
	= (4)(10)(40) = 1600	M1
	Volume of lower part $-(4)(10)(40) = 1000$	IVI I
	Volume of upper part $= 3265.985 - 1600 = 1665.985$	<b>M1</b>
	$=\frac{1665.985}{(40)(40)}=1.04124$	A 1
	Height of upper part $(40)(40)$ Total height = 4 + 1.04124 = 5.04 am	AI
	Total for Q9	11 m

<b>10(a)</b>	$\tan(\angle BCD) = \frac{6}{7}$	M1
	$\angle BCD = 40.60129 \approx 40.6^{\circ}$ (1dn)	A1
10(b)(i)	Let $x$ be be the shortest distance from C to AB	Error carry forward for entire 10(b)
	$\frac{\sin(\angle BAC)}{7} = \frac{\sin(40)}{5}$	
	$\angle BAC = 64.14527^{\circ}$	M1 (sine rule usage)
	$\angle ABC = 180 - 64.14527 - 40 = 75.85473$	
	$\frac{110}{\sin(75.85473)} = \frac{1}{\sin(40)}$	M1 (for AC)
	AC = 7.54276	
	$\frac{1}{2}(7)(7.54276)\sin(40) = \frac{1}{2}(5)(x)$	A1
10b(ii)	$x = 0.78775 \approx 0.79$ m Let G be the position of the guest when he is nearest	
100(11)	to C.	M1 (find depression)
	$\tan(\angle DGC) = \frac{6}{6.78775}$	
	$\angle DGC = 41.4749^{\circ}$	
	G 6.78775 C	M1 (find $\theta$ )
	smallest $\theta$ required = $180 - 90 - 41.4749$	. 1
	= 48.5251	A1 (compares 45° to the required 48 5° )
	The spotlight needs to bend the most $(41.4/49^\circ)$ when the guest is nearest to C and $\theta$ needs to be $48.5251^\circ$	requireu 40.5°.)
	Since $\theta$ can be as small as 45°, the spot light can	
	Total for O10	<b>8</b> m
		0 III

11(a)	Angle AOC (reflex) = angle at circumference	241.2 (angle at center = twice 2425	M1
	Angle AOC = 360 - 241.2 = 118.8 $\sin(59.4) = \frac{24.825}{AO}$ $AO = 28.841 \approx 28.8$ m	A	M1 (trigo ratio) A1
11(b)	Arc Length $=\frac{118.8}{360}$ (2) = 59.8004 $\approx$ 59.8 m (2)	2π(28.841)) 3sf)	M1 A1
11(c)	Speed (km/h)       □         4.5 km / h       5.0 km / h         5.0 km / h       3.5 km / h         3.5 km / h       Since distance of walk         shoppers must be able min.       able	Speed (M/min) $\frac{4.5(1000)}{60} = 75 \text{ m/min}$ $\frac{5(1000)}{60} = 83.33 \text{ m/min}$ $\frac{4(1000)}{60} = 66.67 \text{ m/min}$ $\frac{3.5(1000)}{60} = 58.33 \text{ m/min}$ way is 59.8 m, the speed of the to cover at least 59.8 m per	M2 Converts km/h to m / min correctly
	John should avoid 5 pr and weekends. Min Speed required is $=\frac{59.8}{1000}(60) = 3.588 \text{ km}$	m to 7 pm on both weekdays Or 59.8 m / min. m / h	A1 or M1 (59.8m/min) M1 converts correctly

A1
AI AI