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Chapter 3: Introduction to Divisibility 

SYLLABUS INCLUDES 

Students will learn to prove properties and results, and solve non-routine problems involving:  

Primes, coprimes, divisibility, modulo arithmetic, greatest common divisor, division 

algorithm  

Students may use the following theorems and results in Numbers.  

(i) (The Fundamental Theorem of Arithmetic) Every integer n  1 can be expressed as a 

product of primes in a unique way apart from the order of the prime factors.  

(ii)  There exist infinitely many primes.  

(iii) (Division Algorithm) Let a be an integer and b a positive integer. Then there exists 

unique integers q and r, with 0  r < b, such that a = bq + r.  

(iv)  If a and b are positive integers, then their greatest common divisor (gcd) is a linear 

combination of a and b, that is, there exists integers s and t such that gcd(a, b) = sa + tb.  
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1 Introduction 

 

Johann Carl Friedrich Gauss, German mathematician, astronomer and physicist said “Die 

Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der 

Mathematik,” which translated, means “Mathematics is the queen of sciences and number 

theory is the queen of mathematics.” So perhaps it is appropriate that we begin our course 

with number theory.  

 

So what exactly is number theory? In short, it is the study of natural numbers and the integers. 

The theory of numbers is one of the oldest branches of mathematics, and can be traced back 

to the Greeks and ancient Egyptians. However, the first rudiments of an actual theory are 

generally credited to Pythagoras and his disciples. 

 

 

2 Divisibility 

 

2.1 Division Algorithm 

 

One theorem, the Division Algorithm, acts as the foundation stone upon which most of our 

results are built on. 

 

Theorem 2.1.1  (Division Algorithm) Given integers a and b, with 0b  , there exist unique 

integers q and r satisfying 
,       0a qb r r b= +    

The integers q and r are called, respectively, the quotient and remainder in the division of a 

by b. 

 

The proof of this result is not required for the H3 syllabus, but this result should be intuitive. 

For example, when we divide 17 by 5, we have a quotient of 3 and a remainder of 2. The 

theorem assures us that the quotient and remainder we speak of are unique.  

 

However, let us illustrate the division algorithm when we replace the restriction that b must 

be positive by the simple requirement that 0b  . For example, let us take 7b = − . Then, for 

the choices of 1, 2,61 and 59a = − − , we obtain the expressions 

 
1= 0(-7) +1

-2 = 1(-7) + 5

61= (-8)(-7) + 5

-59 = 9(-7) + 4

 

 

We wish to focus our attention on the applications of the Division Algorithm, and not so 

much on the algorithm itself. As a first illustration, note that with b = 2, the possible 

remainders are r = 0 and r = 1. When r = 0, the integer a has the form a = 2q and is called 

even; when r = 1, the integer a has the form a = 2q + 1 and is called odd. Now 2a  is either of 

the form 2 2 2(2 ) 4a q q= =  or 2 2 2(2 1) 4( ) 1a q q q= + = + + . The point to be made here is that 

the square of an integer always leaves the remainder of 0 or 1 upon division by 4. 
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Example 2.1.1 

Show that the square of any odd integer leaves a remainder of 1 when divided by 8. 

 

 

 

 

 

 

Example 2.1.2 

Show that 
2( 2)

3

a a +
 is an integer for all 1a  . 

 

 

 

 

 

 

 

 

 

 

 

2.2 Greatest Common Divisor (GCD) 

 

Of special significance is the case in which the remainder in the Division Algorithm turns out 

to be zero. Let us look at this case now. 

 

Definition 2.2.1 An integer b is said to be divisible by an integer 0a  , which we 

denote by |a b , if there exists some integer c such that b = ac. We write a | b to indicate that 

b is not divisible by a. 

 

Thus, for example, −12 is divisible by 4, because −12 = 4(−3). However, 31 is not divisible 

by 3; since there is no integer c satisfying 31 = 3c. 

 

There are also other ways to say |a b  than b is divisible by a. We can equivalently say that a 

is a divisor of b, that a is a factor of b, a divides b or b is a multiple of a. Do also note that 

whenever the notation |a b  is employed, it is understood that a is different from zero. 

 

We also note that if a is a divisor of b, then b is also divisible by –a (why?), so that the 

divisors of an integer always occur in pairs. To find all the divisors of a given integer, it is 

sufficient to obtain the positive divisors and then adjoin them to the corresponding negative 

integers. For this reason, we shall usually limit ourselves to a consideration of the positive 

divisors.  
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The following theorem is a list of results that follow from Definition 2.2.1. You should be 

able to prove them by yourself. 

 

Theorem 2.2.1 For integers a, b, c, the following hold: 

(a) | 0a , 1| a , |a a . 

(b) |1a  if and only if 1.a =   

(c) If |a b  and |c d , then |ac bd . 

(d) If |a b  and |b c , then |a c  (transitivity). 

(e) |a b  and |b a  if and only if a b=  . 

(f) If |a b  and 0b  , then a b . 

(g) If |a b  and |a c , then | ( )a bx cy+  for arbitrary integers x and y. 

 

It is also worth pointing out that property (g) extends by induction to sums of more than two 

terms. That is, if | ka b  for k = 1, 2, …, n, then 

1 1 2 2| ( ... )n na b x b x b x+ + +  

for all integers 
ix . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.2.1 

Find all integers n such that 2 1| 1n n+ + . 
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If a and b are arbitrary integers, then an integer d is said to the a common divisor of a and b if 

both |d a  and |d b . Because 1 is a divisor of every integer, 1 is a common divisor of a and 

b. Hence the set of positive common divisors is nonempty. Now every integer divides zero, 

so that if a = b = 0, then every integer serves as a common divisor of a and b. In this instance, 

the set of positive common divisors of a and b is infinite. However, when at least one of a or 

b is nonzero, there are only a finite number of positive common divisors. Among these, there 

is a largest one, which will call the greatest common divisor of a and b.  

 

Definition 2.2.2 (Greatest Common Divisor) 

Let a and b be given integers, with at least one of them different from zero. The greatest 

common divisor of a and b, which we denote by gcd(a, b), is the positive integer d satisfying 

the following: 

(a) |d a  and |d b  

(b) If |c a  and |c b , then c d . 

 

Example 2.2.2 

Find  

(a) gcd(5, −5) 

(b) gcd(8, 17) 

(c) gcd(−8, −36) 

 

 

 

 

 

 

 

 

 

 

It is easy to compute the gcd of 2 numbers when they are small. What happens when they are 

large? We will discuss 2 methods in Section 2.3 and 2.4. 

 

2.3 Prime and composite numbers 

 

Since number theory is about the study of numbers, it is perhaps important for us to look at 

what we call the building blocks of these numbers, which are the prime numbers. So what are 

prime numbers? 

 

Definition 2.3.1 An integer p > 1 is called a prime number, or simply a prime, if its 

only positive divisors are 1 and p. An integer greater than 1 that is not a prime is known as 

composite. 

 

Among the first 10 positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are composite 

numbers. Note that 2 is the only even prime (why?), and according to our definition, the 

integer 1 is neither prime nor composite. 

There are many questions concerning primes, in particular, with regard to its distribution. In 

fact, one of the millennium problems, the Riemann Zeta Function, is closely tied to the 

distribution of prime numbers.  
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Let x be a positive real number. The question “How many primes are there less than x?” has 

been so commonly asked that a function ( )x , which denotes the number of primes less than 

or equal to x has been defined. 

 
 

For small x, it is easy to count. But it is interesting to note how irregular the graph is for small 

values of x. 

 

Now let us zoom out. 

 
So even though ( )x  doesn't seem regular at small values of x, there seems to be a definite 

trend to its values. 
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In particular, the Prime Number Theorem states that the number of primes not exceeding x is 

asymptotic to 
ln

x

x
. What does this mean? This means for large x, we have 

ln

( )
lim 1.

xx
x

x
→

= . 

 

The table below further illustrates the trend: 

 

x ( )x  

ln

x

x
 

ln

( )
x
x

x
 

1000 168 145 1.16 

10000 1229 1086 1.13 

100000 9592 8686 1.10 

1000000 78498 72382 1.08 

10000000 664579 620420 1.07 

100000000 5761455 5428681 1.06 

 

In this H3 course, we are not studying the distribution of the prime numbers. In fact any 

meaningful study of the distribution of prime numbers requires complex analysis and 

analytical number theory, usually advanced undergraduate/graduate course material. 

 

However, there is one basic result established by Euler some 2000 years ago which you 

should know: 

 

Theorem 2.3.1 (Euler) There are infinitely many primes. 

 

Proof We proceed by contradiction. Suppose there is only a finite number of primes, say 

1 2 ... mp p p   . Consider the number 
1 2 1mP p p p= + . If P is a prime, then 

mP p , 

contradicting the maximality of pm. Hence P must be composite and thus has a prime divisor 

p > 1 which is one of 
1 2, ,..., mp p p , say pk. Then it follows that 

1 2| 1k mp p p p +  But this 

means that |1kp , which is a contradiction. 

 

So let us come back to our discussion. Why are prime numbers the building blocks of the 

natural numbers? Let us consider the number 420. It is certainly composite. It can be 

represented, for instance, as 42 × 10. But each of the numbers 42 and 10 are composite, too. 

Indeed, 42 = 6 × 7, and 10 = 2 × 5. Since 6 = 2 × 3, we have 420 = 42 × 10 = 6 × 7 × 2 × 5 = 

2 × 3 × 7 × 2 × 5 = 2 × 2 × 3 × 5 × 7. This is the complete “decomposition” of our number 

(its representation as a product of primes). 

 

It is clear that we can factor any natural number greater than 1 in the same way. We just keep 

factoring the numbers we have into pairs of smaller numbers as long as we can (and if any 

one of the factors cannot be represented as such a product, then it is a prime factor). 

 

But what if we try to factor the number 420 in some other way? For example, we can start 

with 420 = 15 × 28. It may surprise you that we will always end up with the same 

representation (products which differ only in the order of their factors are considered 

identical – we usually arrange the factors in increasing order). 
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This may seem obvious, but it is not immediate to prove. In fact, this is the Fundamental 

Theorem of Arithmetic: 

 

Theorem 2.3.2 Fundamental Theorem of Arithmetic 

Every positive integer 1n   is either a prime or a product of primes; this representation is 

unique, apart from the order in which the factors occur. 

 

Proof The proof is not required in the H3 syllabus, but you should be able to get a rough 

understanding of it from the sketch we have provided below. There are some subtleties 

though, can you spot them? 

 

We proceed by strong induction. Consider some integer n > 1. Either it is prime or it is 

composite. If it is prime, we are done. If it is composite, then there exists an integer d | n and 

1 < d < n. Among all such integers d, choose the smallest, say p1. Then p1 must be prime. 

Hence we can write n = p1 n1 for some integer n1 satisfying 1 < n1 < n. This completes the 

induction. 

 

Example 2.3.1 

Find 

(a) gcd(2016, 1980) 

(b) gcd(A, B), where 3 10 22 3 5 7A =     and 52 3 11B =   . 

(c) gcd(806, 12529) 

 

 

 

 

 

 

It may happen that 1 is the only common (positive) divisor of a given pair of integers a and b, 

whence gcd(a, b) = 1. In fact, this situation occurs often enough to prompt a definition. 

 

Definition 2.3.2 Two integers a and b, not both of which are zero, are said to be 

relatively prime (or coprime) whenever gcd(a, b) = 1. 

 

Now let us discuss another definition of the gcd. The next theorem indicates that gcd(a, b) 

can be represented as a linear combination of a and b. By linear combination, we mean an 

expression of the form ax + by, where x and y are integers. This is illustrated by  

gcd( 12,30) 6 ( 12)2 (30)1   or   gcd( 8, 36) 4 ( 8)4 ( 36)( 1)− = = − + − − = = − + − − . 

The proof of the theorem below is not required in the H3 syllabus. 

 

Theorem 2.3.3 Given integers a and b, not both of which are zero, there exists integers 

x and y such that gcd( , ) .a b ax by= +  

 

Do note the theorem only ensures the existence of integers x and y, but does not provide a 

practical method of finding the values of x and y. We will focus on the applications of this 

result and talk about how to find the x and y in Chapter 5 Section 1. 
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The following theorem characterizes relatively prime integers in terms of linear 

combinations. 

 

Theorem 2.3.4 Let a and b be integers, not both zero. Then a and b are relatively 

prime if and only if there exist integers x and y such that 1 = ax + by. 

 

Proof 

 

 

 

 

 

 

 

 

 

 

It is important for you to compare theorems 2.3.3 and theorems 2.3.4. Theorem 2.3.4 leads to 

an observation that is useful in certain situations; namely, 

 

Corollary 1 If gcd(a, b) = d, then gcd , 1
a b

d d

 
= 

 
. 

 

Before starting with the proof proper, we should observe that a/d and b/d are integers (why?). 

 

Proof 

 

 

 

 

 

 

 

 

Corollary 2 If |a c  and |b c , with gcd(a, b) = 1, then |ab c . 

 

Proof 

 

 

 

 

 

 

 

 

Question: Is the condition gcd(a, b) = 1 necessary? 
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The following theorem is of fundamental importance, and is again a consequence of Theorem 

2.3.4. 

 

Theorem 2.3.5 If |a bc , with gcd(a, b) = 1, then |a c . 

 

Proof 

 

 

 

 

 

 

 

 

 

Question: Is the condition gcd(a, b) = 1 necessary? 

 

 

 

 

The subsequent theorem often serves as a definition of gcd(a, b). The advantage of using it as 

a definition is that order relationship (compare to Definition 2.2.2) is not involved. 

 

Theorem 2.3.6 

Let a and b be given integers, with at least one of them different from zero. For a positive 

integer d, d = gcd(a, b) if and only if 

(a) |d a  and |d b  

(b) Whenever |c a  and |c b , then |c d . 

 

Proof 
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2.4 Lowest Common Multiple (LCM) 

 

There is a concept parallel to that of the greatest common divisor of two integers, known as 

their least common multiple. An integer c is said to be a common multiple of two nonzero 

integers a and b whenever a | c and b | c. Evidently, zero is a common multiple of a and b. To 

see that there exist common multiples that are non trivial, just note that the product ab is a 

common multiple of a and b. Hence the set of positive common multiples of a and b must 

contain a smallest integer; which we call as the least common multiple of a and b. 

 

Definition 2.4.1 The lowest common multiple of two nonzero integers a and b, denoted 

by lcm(a, b), is the positive integer m satisfying the following: 

(a) a | m and b | m 

(b) If a | c and b | c with c > 0, then m c . 

 

For example, the positive common multiples of the integers 12 and 30 are 60, 120, 180, … . 

Hence lcm(12, 30) = 60. We lack a relationship between the ideas of greatest common divisor 

and lowest common multiple. The gap is filled by the following theorem. 

 

Theorem 2.4.1 For positive integers a and b, 

gcd( , )lcm( , )a b a b ab= . 

 

Proof 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Perhaps the chief virtue of Theorem 2.4.1 is that it makes the calculation of the least common 

multiple of two integers dependent on the value of their greatest common divisor – which, in 

turn, can be calculated from the Euclidean Algorithm.  

 

For instance, when considering the positive integers 682 and 264, we found that their gcd is 

22. Hence 
682(264)

lcm(682,264) 8184.
22

= =  
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Tutorial  
 

1. Use the Division Algorithm to show that the square of any integer is either of the form 

3k or 3k + 1. Hence show that 3a2 – 1 is never a perfect square. 

 

2. Show that the cube of any integer when divided by 7, gives remainder 0, 1 or 6. 

 

3. Show that 
( 1)(2 1)

6

n n n+ +
 is an integer for all positive integers n.  

 

4. Find all terms in the following sequence that are perfect squares: 

 

1, 11, 111, 1111, 11111, …. 

 

5. Prove that, for a positive integer n and any integer a, gcd(a, a + n) divides n; hence, 

show any two consecutive integers are coprime. 

 

For Questions 6 to 8, you should not use the Euclidean Algorithm.  

 

6. For any integer a, show that 

 (a) gcd(2 1,9 4) 1a a+ + = ; 

 (b) gcd(5 2,7 3) 1a a+ + = ; 

 (c) if a is odd, then gcd(3 ,3 2) 1a a + = . 

 

7. If a and b are integers, not both of which are zero, prove that gcd(2 3 ,4 5 )a b a b− −  

divides b. Hence show that 2a + 3 and 4a + 5 are coprime for any integer a. 

 

 

8. Show that if gcd(a, b) = 1, then 2 2gcd( , ) 2a b a b+ + . 

Hence write down the possible values of  2 2gcd( , )a b a b+ + . 

 

 

9. For nonzero integers a and b, verify that the following conditions are equivalent: 

 (a) a | b. 

 (b) gcd(a, b) = |a|. 

 (c) lcm(a, b) = |b|. 

10. Lockers in a row are numbered 1, 2, 3, ..., 1000. At first, all the lockers are closed. A 

person walks by and opens every other locker, starting with locker #2. Thus lockers 2, 

4, 6, . . . , 998, 1000 are open. Another person walks by, and changes the "state" (i.e., 

closes a locker if it is open, opens a locker if it is closed) of every third locker, starting 

with locker #3. Then another person changes the state of every fourth locker, starting 

with #4, etc. This process continues until no more lockers can be altered. Which 

lockers will be closed?  
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11. [852/2/1979/Dec/19] 

For any positive integer n, let ( )n  denote the sum of all positive integers (including 

1 and n) which divide n. 

(i) If n = pa, where p is prime, show that 
1 1

( )
1

ap
n

p


+ −
=

−
 

Given that p is an odd prime, deduce that ( )ap is odd if and only if pa is a square. 

(ii) If n = 2mp, where p is an odd prime, and ( ) 2n n = , show that p = 2m+1 – 1.  

 

12. [9225/2/Dec/1985/19] 

(a) Explain what is meant by the following two statements concerning the integers 

a, b and c: 

 (i) a, b, c are relatively prime, 

 (ii) a, b, c are relatively prime in pairs. 

 Show that (i) is a necessary but not sufficient condition for (ii).  [4] 

(b) Show that n3 + 6n2 + 11n + 6 is divisible by 6 if n is even, and by 24 if n is 

odd.          [8] 
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Assignment 3: Introduction to Divisibility 

 

1. (i) Show that 1 21 ( 1)( ... 1)k k kx x x x x− −− = − + + + +  for any positive integer k. 

(ii) Prove that if d | n, then 2d – 1 | 2n – 1. 

 (iii) Hence show that 235 – 1 is divisible by 31 and 127. 

 

2. [852/2/1983/Dec/19] 

State whether the following assertions are true or false. Prove those which you 

consider to be true and give counter-examples for those which you consider to be 

false. 

For positive integers a and b, 

(i) if a2 + 1 is divisible by b, then a4 + 1 is divisible by b. 

(ii) if a2 – 1 is divisible by b, then a4 – 1 is divisible by b. 

(iii) if b2 is divisible by a prime p, then b is divisible by p. 

(iv) if p is a prime and both a and a2 + b2 are divisible by p, then b is divisible by 

p. 

(v) if p is a prime and both a and a2 + 6b2 are divisible by p, then b is divisible by 

p. 

 

3. [852/1/1978/Dec/19 (modified)] 

Show that if (n, m) = 1, then (n, n – m) = 1, where (n, m) denotes the greatest common 

divisor of n and m. 

(i) Show that (a + b, a2 – ab + b2) = (a + b, 3ab), and deduce that, if (a, b) = 1, 

then (a + b, a2 – ab + b2) = 1 or 3. 

(ii) Show that (n! + 1, (n + 1)! + 1) = 1. 

(iii) Show that, if n > 1, the sum of the positive integers less than n and coprime to 

n is 
1

( )
2

n n , where ( )n  is the number of such integers. 

(iv) Find also the sum of the positive integers less than 2n and coprime to n in a 

similar form. 

 

 

 


