Y4 CEP - Introduction to
Computational Thinking and
Data Science

Lesson O

Assumptions .

* proficient with basics of Python:
e conditional statements
* loops

* familiar with writing object — oriented programs in Python 3
* class
e attributes
* methods
* getter
* setter

Expectations

* less about learning to program, more about dipping your toes into
data science

e using mathematics and statistics together with programming to
better understand “things”

How you will be graded

 Homework / in-class Tasks (30%)
* Programming Tasks

* FSR (30%)
* Individual Finding/Sharing/Reflecting

» peer evaluation for sharing component (both evaluated)

e “Weekly Quiz (40%)
* pen and paper / may include some programming questions
* short answer , True/False, MCQ, code writing
e ~30 min before start of lesson

What is expected of you . . .

* revisit the PowerPoint Slides

 test the codes in the readings and slides
* work on the tasks (if any)

* delve deeper on your own

Topics to discuss . . .

some simple numerical problems
complexity, searching & sorting
optimization problems
graph-theoretic models
stochastic thinking

random walks

Monte Carlo simulation
confidence intervals

sampling and standard error
experimental data

introduction to machine learning
clustering

classification

FSR

in total about 15~16 lessons
about 2~3 lessons

Some Simple Numerical Problems

finding cube root

GUESS-AND-CHECK

" the process below also called exhaustive enumeration

" given a problem...
" you are able to guess a value for solution
" you are able to check if the solution is correct

* keep guessing until find solution or guessed all values

GUESS-AND-CHECK
— cube root

cube = 8
for guess 1n range (cube+l):
1f guess**3 == cube:

print ("Cube root of", cube, "1s", guess)

GUESS-AND-CHECK
— cube root

cube = 8
for guess in range (abs (cube)+1):
if guess**3 >= abs (cube) :
break
1f guess**3 != abs (cube):
print (cube, 'is not a perfect cube')
else:
if cube < 0:
guess = —-guess

print ('Cube root of '+str(cube)+' 1is

'+str (guess))

APPROXIMATE SOLUTIONS

= good enough solution
= start with a guess and increment by some small value

" keep guessing if | guess3-cube| >= epsilon
for some small epsilon

* decreasing increment size = slower program

" increasing epsilon —> less accurate answer

APPROXIMATE SOLUTION
— cube root

cube = 27

epsilon =

.01

o O

guess = 0.
0.0001
num guesses = 0

increment

while abs(guess**3 - cube) >= epsilon and guess <= cube
guess += 1ncrement
num guesses += 1

print ('num guesses =', num guesses)

1f abs(guess**3 - cube) >= epsilon:
print ('Failed on cube root of', cube)

else:

print (guess, 'is close to the cube root of', cube)

BISECTION SEARCH

= half interval each iteration

* new guess is halfway in between

" to illustrate, let’s play a game!

_t@

BISECTION SEARCH
— Cube root

cube = 27

epsilon = 0.01
num_guesses = 0

low = 0

high = cube

guess = (high + low) /2.0

while abs(guess**3 - cube) >= epsilon:

1f guess**3 < cube
low = guess

else:
high = guess
guess = (high + low) /2.0
num_ guesses += 1
print 'num guesses =', num guesses

print guess, 'is close to the cube root of’,

cube

BISECTION SEARCH
CONVERGENCE

= search space

o first guess: N/2
> second guess: N/4
° kth guess: N/2¥

= guess converges on the order of log,N steps

* bisection search works when value of function varies
monotonically with input

* code as shown only works for positive cubes > 1 —why?

* challenges -2 modify to work with negative cubes!
- modify to work with x < 1!

X <]

" if x< 1, search space is 0 to x but cube root is greater
than x and less than 1

* modify the code to choose the search space
depending on value of x

SOME OBSERVATIONS

= Bisection search radically reduces computation time —
being smart about generating guesses is important

" Should work well on problems with “ordering”
property — value of function being solved varies
monotonically with input value

> Here function is g**2; which grows as g grows

NEWTON-RAPHSON

" General anrommatlon algorithm to find roots of a
polynomial in one variable

p(x) =a x"+ an_lx”'l +..+a, X+ a,
= \Want to find r such that p(r) =

" For example to find the square root of 24, find the root of

p(x) =

- rI‘]\Ie*«ka's;‘con showed that if g is an approximation to the root,
then

g—plg)/p'(g)
is a better approximation; where p’ is derivative of p

NEWTON-RAPHSON

sSimple case: cx? + k
"First derivative: 2cx
=So if polynomial is x2- k , then derivative is 2x

"*Newton-Raphson says given a guess g for root, a better
guess is

g—(g*—k)/2g

NEWTON-RAPHSON

*"This gives us another way of generating guesses, which we can check; very efficient

epsilon = 0.01
y = 24.0
guess = y/2.0

numGuesses = 0

while abs (guess*guess - y) >= epsilon:
numGuesses += 1
guess = guess - (((guess**2) - vy)/(2*guess))
print (‘numGuesses = ' + str (numGuesses))

print ('Square root of ' + str(y) + ' 1s about ' + str(guess))

'terative algorithms

" Guess and check methods build on reusing same code

> Use a looping construct to generate guesses, then check
and continue

" Generating guesses
o Exhaustive enumeration

> Bisection search
> Newton-Raphson (for root finding)

Practice/Exercise

Write a program that asks the user to enter an integer and prints two
integers, root and pwr, such that 1 < pwr < 6 and root**pwr is equal to
the integer entered by the user. If no such pair of integers exists, it
should print a message to that effect.

Write a program that prints the sum of the prime numbers greater than
2 and less than 1000. Hint: you probably want to have a loop that
iterates over the odd integers between 3 and 999.

Practice/Exercise

The empire state building is 102 stories high. A man wanted to know
the highest floor from which he could drop an egg without the egg
breaking. He proposed to drop an egg from the top floor. If it broke, he
would go down a floor and try it again. He would do this until the egg
did not break. At worst, this method requires 102 eggs. Implement a
method that at worst uses seven eggs.

Add some code to the implementation of Newton-Raphson that keeps
track of the number of iterations used to find the root. Use that code as

part of a program that compares the efficiency of Newton-Raphson and
bisection search.

	Slide 1: Y4 CEP - Introduction to Computational Thinking and Data Science
	Slide 2: Assumptions .
	Slide 3: Expectations
	Slide 4: How you will be graded
	Slide 5: What is expected of you . . .
	Slide 6: Topics to discuss . . .
	Slide 7: Some Simple Numerical Problems
	Slide 8: finding cube root
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Practice/Exercise
	Slide 24: Practice/Exercise

