

SERANGOON JUNIOR COLLEGE

2014 JC2 PRELIMINARY EXAMINATION

MATHEMATICS

Higher 2 9740/1

Wednesday 20 Aug 2014

Additional materials: Writing paper

List of Formulae (MF15)

TIME: 3 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on the cover page and on all the work you hand in.

Write in dark or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

Total marks for this paper is 100 marks.

This question paper consists of 6 printed pages (inclusive of this page) and 2 blank pages.

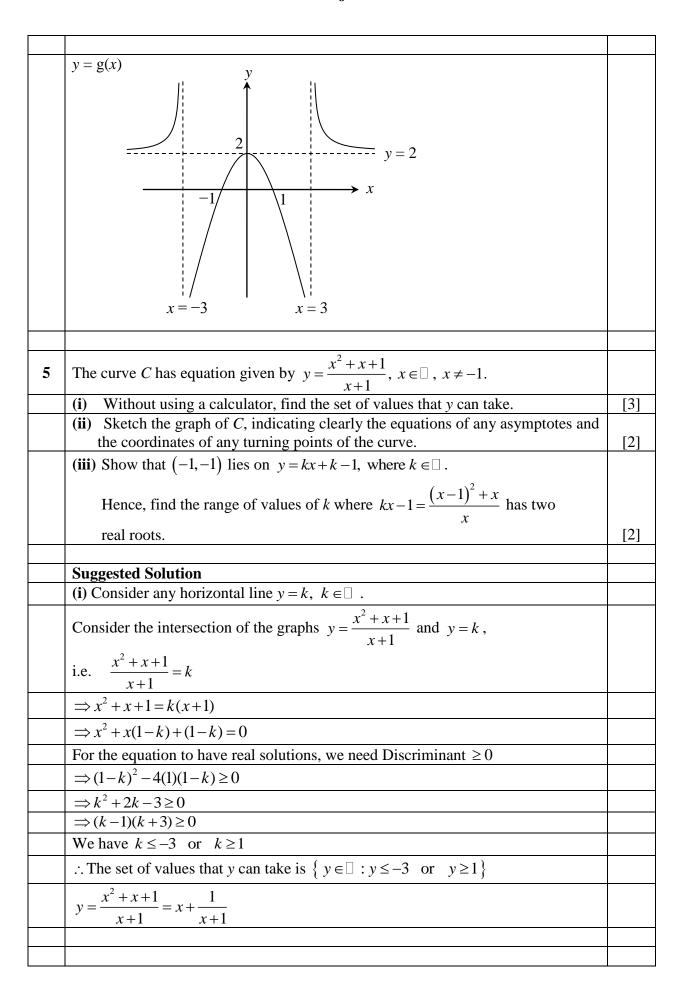
Answer all questions [100 marks].

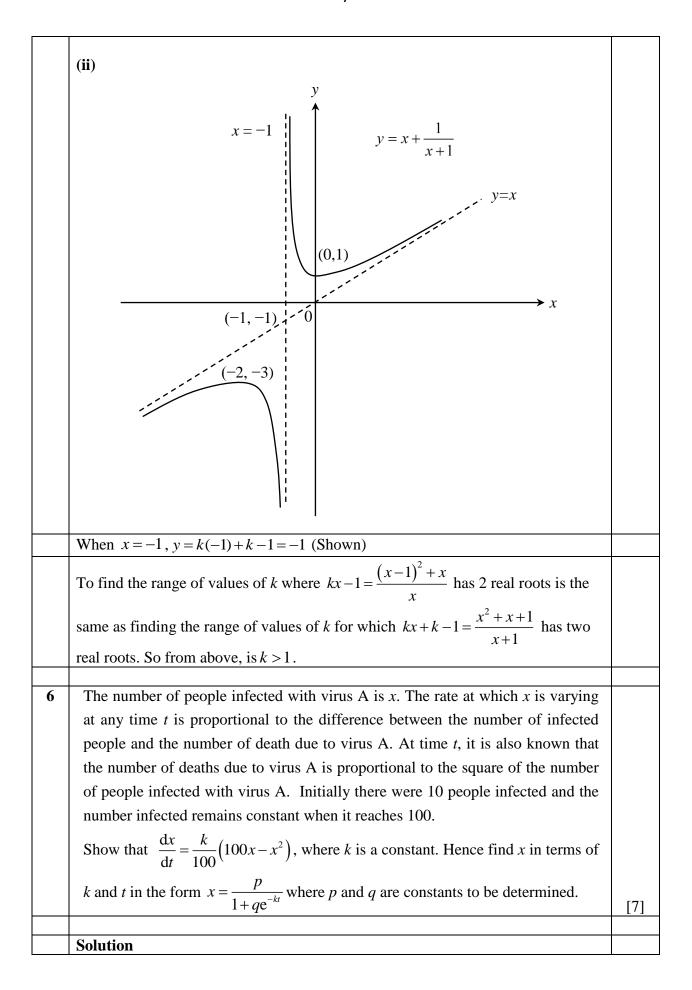
1	A cubic polynomial has turning points at $A(-1, 13)$ and $B(2, -14)$.	
	(i) Find the equation of this polynomial.	[3]
	(ii) Hence find the coordinates of the point C on the graph of this polynomial such	[0]
	that AC is parallel to the x -axis.	[2]
	Suggested Solutions	
	Let $y = ax^3 + bx^2 + cx + d$	
	So, $\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx + c$	
	Using $A(-1, 13)$,	
	-a+b-c+d=13 (1)	
	3a-2b+c=0 (2)	
	Using $B(2, -14)$,	
	8a + 4b + 2c + d = -14 (3)	
	12a + 4b + c = 0 (4)	
	Using GC, $a = 2$, $b = -3$, $c = -12$, $d = 6$	
	Hence, $y = 2x^3 - 3x^2 - 12x + 6$	
	Since AC is parallel to the x-axis, y-coordinate at C is 13.	
	So, $13 = 2x^3 - 3x^2 - 12x + 6$	
	Solving, we get $x = 3.5$ or $x = -1$ (N.A.)	
	Therefore, the coordinates of C is $(3.5, 13)$.	
2	SRBank introduces the UniSave Bank Account to encourage young parents to save up for their child's university education. This account consists of two independent components – Ordinary Account and Birthday Account. The bank will provide an interest rate of 1% of the total amount in the Ordinary Account at the end of every year. As a bonus, the bank will deposit an amount equivalent to ten times the age of the child into the Birthday Account on the child's birthday each year, with the last deposit on the 18^{th} birthday. Mr and Mrs Hon intend to save up for their child's university education by depositing a fixed amount of \$3000 into the UniSave's Ordinary Account at the start of every year from the year their child turns one year old. (i) Show that the total amount in the UniSave Bank Account at the end of the year when their child is n years old, where $n \ge 19$, is given by	
	$303000(1.01^n) - 301290$.	[3]
	(ii) Given that $n \ge 19$, find the least n such that the total amount in the UniSave	
	Bank account will exceed \$70000.	[2]

		ed Solution		
	(i) End	Total Amount in	Total Amount in	
	of	Ordinary Account	Birthday Account	
	Year	Gramary Recount	Britiday / Recount	
	1	\$3000(1.01)	\$10	
	2	\$[3000+3000(1.01)](1.01)	\$(10+20)	
		$= $3000(1.01) + 3000(1.01^2)$		
	3	$[3000+3000(1.01)+3000(1.01^2)](1.01)$	\$(10+20+30)	
		$= $3000(1.01) + 3000(1.01^{2}) + 3000(1.01^{3})$		
	17	$3000(1.01+1.01^2++1.01^{17})$	\$(10++170)	
	18	$3000(1.01+1.01^2++1.01^{18})$	\$(10++180)	
	19	$3000(1.01+1.01^2++1.01^{19})$	\$(10++180)	
		mount at the end of Year n (where $n \ge 19$)		
	= \$3000	$0(1.01+1.01^2++1.01^n)+10+20++180$		
	= \$3000	$0\left[\frac{1.01(1.01^{n}-1)}{1.01-1}\right] + \frac{18}{2}(10+180)$		
	= \$3030	$000(1.01^n - 1) + 1710$		
	= \$3030	$00(1.01^n) - 301290$		
	(ii)			
	303000	$(1.01^n) - 301290 > 70000$		
	$1.01^n > 1.01^n > 1.01^n$			
	Least n	= 21		
3	A seque	nce of real numbers u_1, u_2, u_3, \dots satisfies the re	currence relation	
	11 50440	•		
		$u_{n+1} = \frac{u_n}{u_n + 3} , n \in \square^+.$		
	Given th	nat $u_1 = 1$, and by considering $\frac{2}{u_n} + 1$ for $n = 1, 2$	2,3, make a suitable	
	conjectu	are for u_n in the form of $\frac{k}{a^n - b}$, where $a, b, k \in$	□ +.	
		e conjecture by Mathematical Induction.		[4

Solution	
$u_1 = 1$ $\frac{2}{u_1} + 1 = \frac{2}{(1)} + 1 = 3^1$	
$u_2 = \frac{u_1}{u_1 + 3} = \frac{(1)}{(1) + 3} = \frac{1}{4}$ $\frac{2}{u_2} + 1 = \frac{2}{(\frac{1}{4})} + 1 = 3^2$	
$u_3 = \frac{u_2}{u_2 + 3} = \frac{\left(\frac{1}{4}\right)}{\left(\frac{1}{4}\right) + 3} = \frac{1}{13}$ $\frac{2}{u_3} + 1 = \frac{2}{\left(\frac{1}{13}\right)} + 1 = 3^3$	
Conjecture: $u_n = \frac{2}{3^n - 1}$	
Let P_n be the statement " $u_n = \frac{2}{3^n - 1}$, $\forall n \in \square^+$ ".	
When $n = 1$,	
LHS = $u_1 = 1$ RHS = $\frac{2}{3^1 - 1} = 1 = LHS$	
Hence P_1 is true.	
Assume P_k is true for some $k \in \square^+$ i.e $u_k = \frac{2}{3^k - 1}$	
To show that P_{k+1} is true, i.e $u_{k+1} = \frac{2}{3^{k+1} - 1}$	
$LHS = u_{k+1} = \frac{u_k}{u_k + 3}$	
$= \frac{\left(\frac{2}{3^k - 1}\right)}{\left(\frac{2}{3^k - 1}\right) + 3}$	
$= \frac{\left(\frac{2}{3^k - 1}\right)}{\left(\frac{2}{3^k - 1}\right) + 3} \times \frac{3^k - 1}{3^k - 1}$	
$= \frac{2}{2+3(3^k-1)}$	
$=\frac{2}{3(3^k)-1}$	
$= \frac{2}{3^{k+1} - 1} = \text{RHS}$	
Therefore, P_{k+1} is true when P_k is true.	
Since P_1 is true and P_{k+1} is true when P_k is true, by Mathematical Induction, P_n is	

	true for all $n \in \square^+$.	
	true for an n e .	
4	(a) A graph with equation $y = f(x)$ undergoes in succession, the following	
	transformations:	
	A: A translation of 3 units in the direction of the negative x-axis	
	B: A reflection about the y-axis	
	C: A scaling parallel to the x-axis by a factor of 2	
	The equation of the resulting curve is given by $y = \frac{x-4}{2x-18}$.	
	Find the equation $y = f(x)$.	[3]
	(b) The graphs of $y = g(x) $ and $y = -\sqrt{g(x)}$ are shown below.	1-1
	$y = 2$ $x = -3$ $x = 3$ Graph of $y = g(x) $ $x = -3$ $x = 3$ Graph of $y = -\sqrt{g(x)}$ Sketch the graph of $y = g(x)$, showing clearly any equations of asymptote and	
	intercepts with the axes.	[3]
	Solution	
	$y = \frac{x-4}{2x-18} \xrightarrow{C'} y = \frac{2x-4}{4x-18} = \frac{x-2}{2x-9}$	
	$y = \frac{x-2}{2x-9} \xrightarrow{B'} y = \frac{-x-2}{-2x-9} = \frac{x+2}{2x+9}$	
	$y = \frac{x-2}{2x-9} \xrightarrow{B'} y = \frac{-x-2}{-2x-9} = \frac{x+2}{2x+9}$ $y = \frac{x+2}{2x+9} \xrightarrow{A'} y = \frac{(x-3)+2}{2(x-3)+9} = \frac{x-1}{2x+3}$	





Let <i>D</i> represent the number of deat	hs due to virus A.	
$\frac{\mathrm{d}x}{\mathrm{d}t} \propto (x - D)$		
$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(x - D\right)$		
$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(x - Ax^2\right)$		
When $x = 100, \frac{\mathrm{d}x}{\mathrm{d}t} = 0$		
$0 = k \left(100 - A \left(100 \right)^2 \right)$		
$A = \frac{1}{100}$		
$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(x - \frac{1}{100}x^2\right) = \frac{k}{100}\left(100x - \frac{1}{100}x^2\right)$	(x^2) , shown	
Integrating $\Rightarrow \int \frac{1}{100x - x^2} dx = \int \frac{k}{10}$	$\frac{d}{dt}$	
$\int \frac{1}{(100-x)x} dx = \int \frac{k}{100} dt$		
$\frac{1}{100} \int \frac{1}{x} + \frac{1}{100 - x} dx = \int \frac{k}{100} dt$		
$\int \frac{1}{x} + \frac{1}{100 - x} \mathrm{d}x = \int k \mathrm{d}t$		
$\ln x - \ln 100 - x = kt + C$		
$ \ln\left \frac{x}{100-x}\right = kt + C $		
$\frac{x}{100 - x} = Be^{kt} \text{ where } B = \pm e^C$		
$x = 100Be^{kt} - Bxe^{kt}$		
$x + Bxe^{kt} = 100Be^{kt}$		
$x\left(1+Be^{kt}\right)=100Be^{kt}$		
$x = \frac{100Be^{kt}}{1 + Be^{kt}}$		
When $t = 0, x = 10$		

	$10 = \frac{100B}{1+B}$	
	10 + 10B = 100B	
	90 <i>B</i> = 10	
	$B = \frac{1}{9}$	
	$\therefore x = \frac{100\left(\frac{1}{9}\right)e^{kt}}{1 + \left(\frac{1}{9}\right)e^{kt}}$	
	$=\frac{100e^{kt}}{9+e^{kt}}$	
	$= \frac{100}{\left(\frac{9 + e^{kt}}{e^{kt}}\right)} = \frac{100}{1 + 9e^{-kt}}, \text{ where } p = 100 \text{ and } q = 9$	
7	The equations of three planes p_1 , p_2 , p_3 are $x + y + z = 3$,	
	x-z=3,	
	$3x + \lambda y - 2z = \mu,$	
	respectively, where λ and μ are constants. A line l passes through the origin and the point, $A(1, 2, -1)$. (i) Find the coordinates of B , the point of intersection between the line l and	
	plane p_1 .	[2]
	(ii) Find the sine of the acute angle between the line l and the plane p_1 . Hence	[3]
	find the exact shortest distance from point A to the plane p_1 .	[2]
	(iii) Find the conditions satisfied by λ and μ given that there is no point in	[2]
	common among the three planes.	[3]
		[-]
	Solution (X) Six P V (A)	
	(i) Since B lies on the line l ,	
	$\mathbf{b} = \begin{pmatrix} \lambda \\ 2\lambda \\ -\lambda \end{pmatrix} \text{ for some } \lambda \in \square$	
	$ \begin{pmatrix} \lambda \\ 2\lambda \\ -\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 $	

		1 1
	$\lambda = \frac{3}{2}$	
	Coordinates of B are $\left(\frac{3}{2}, 3, -\frac{3}{2}\right)$	
	(ii) Let θ be the acute angle between the line l and plane p_1 .	
	$\sin \theta = \frac{\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}}$	
	$\sin \theta = \frac{1 + 2 - 1}{\sqrt{6}\sqrt{3}} = \frac{2}{3\sqrt{2}}$	
	Shortest dist = $\begin{vmatrix} \overrightarrow{BA} \end{vmatrix} \sin \theta = \frac{1}{2} \begin{vmatrix} -1 \\ -2 \\ 1 \end{vmatrix} \left(\frac{2}{3\sqrt{2}} \right) = \frac{\sqrt{3}}{3}$ units	
	$ (\mathbf{iii}) \begin{pmatrix} 1\\1\\1 \end{pmatrix} \times \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix} $	
	$\begin{pmatrix} -1\\2\\-1 \end{pmatrix} \bullet \begin{pmatrix} 3\\\lambda\\-2 \end{pmatrix} = 0$	
	$-3+2\lambda+2=0$	
	$\lambda = \frac{1}{2}$	
	Using GC, $(3, 0, 0)$ lies on the line of intersection between planes p_1 and p_2 .	
	$\mu \neq 9$	
8	A curve has the parametric equations	
	$x = \cos^2 t$, $y = \sin^3 t$, for $0 \le t \le \frac{\pi}{2}$.	
	(i) Sketch the curve, indicating clearly the axial intercepts.	[1]
	(ii) Find the equations of the tangent and normal to the curve at the point	
	$P(\cos^2\theta, \sin^3\theta)$, where $0 < \theta < \frac{\pi}{2}$.	[4]
	(iii) The tangent to the curve at <i>P</i> meets the <i>x</i> -axis at <i>A</i> and the normal to the curve at <i>P</i> meets the <i>x</i> -axis at <i>B</i> respectively. Show that the area of triangle	[3]
	the case most and a min and respectively. Show that the area of thangle	[~]

1	
$PBA = \frac{1}{12} \sin^5 \theta \ (4 + 9\sin^2 \theta).$	
12	
Solution	
(i) y	
↑	
1	
$\longrightarrow x$	
(ii) $x = \cos^2 t$, $\frac{dx}{dt} = -2\cos t \sin t$	
Cit	
$y = \sin^3 t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 3\sin^2 t \cos t$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\sin^2 t \cos t}{-2\cos t \sin t} = -\frac{3}{2}\sin t$	
$\frac{dx}{dx} = \frac{-2\cos t \sin t}{-2\cos t \sin t} = -\frac{\sin t}{2}$	
ν	
^	
/Equation of normal	
1	
P/	
0 B A 1	
Equation of tangent	
At the point $P(\cos^2\theta, \sin^3\theta)$, $t = \theta$	
Gradient of tangent, $m = \frac{dy}{dx} = -\frac{3}{2}\sin\theta$ Equation of tangent at $P(\cos^2\theta, \sin^3\theta)$:	
$\frac{dx}{dx} = \frac{1}{2} \sin \theta$	
$y - \sin^3 \theta = -\frac{3}{2} \sin \theta (x - \cos^2 \theta)$	
$y = -\frac{3}{2}\sin\theta (x - \cos^2\theta) + \sin^3\theta$	
At the point $P(\cos^2\theta, \sin^3\theta)$, $t = \theta$ Gradient of normal, $-\frac{1}{m} = -(\frac{1}{-\frac{3}{2}\sin\theta}) = \frac{2}{3\sin\theta}$	
Gradient of normal, $-\frac{1}{1} = -(\frac{1}{1}) = \frac{2}{1}$	
$m = \frac{3}{-3}\sin\theta$ $3\sin\theta$	
2	
Equation of normal at $P(\cos^2\theta, \sin^3\theta)$:	
$y - \sin^3 \theta = \frac{2}{3\sin \theta} (x - \cos^2 \theta)$	
38III Ø	

	$y = \frac{2}{3\sin\theta}(x - \cos^2\theta) + \sin^3\theta$	
	(iii) At A, When $y = 0$, $0 - \sin^3 \theta = -\frac{3}{2} \sin \theta (x - \cos^2 \theta)$	
	$\frac{2}{3}\sin^2\theta = x - \cos^2\theta$	
	$x = \cos^2 \theta + \frac{2}{3}\sin^2 \theta$	
	At B, When $y = 0$, $0 - \sin^3 \theta = \frac{2}{3\sin \theta} (x - \cos^2 \theta)$	
	$-\frac{3}{2}\sin^4\theta = x - \cos^2\theta$	
	$x = \cos^2 \theta - \frac{3}{2} \sin^4 \theta$ Area of triangle <i>PPA</i>	
	Area of triangle <i>PBA</i> $= \frac{1}{2} \left[(\cos^2 \theta + \frac{2}{3} \sin^2 \theta) - (\cos^2 \theta - \frac{3}{2} \sin^4 \theta) \right] \left[\sin^3 \theta \right]$	
	$=\frac{1}{2}\left[\frac{2}{3}\sin^2\theta + \frac{3}{2}\sin^4\theta\right]\left[\sin^3\theta\right]$	
	$=\frac{1}{12}\sin^5\theta \ (4+9\sin^2\theta) \ (Shown)$	
9	The functions f and g are defined as follows:	
	$f: x \mapsto 4x - x^2 , x < k$	
	g: $x \mapsto \sqrt{x+4}$, $x > -4$. (i) State the largest value of k for the inverse function f to exist. Hence, find	
	f ⁻¹ in similar form. (ii) Using the value of k found in (i), explain why the composite function gf	[4]
	exists. State the range of gf. Find the rule of gf in the form $bx+a$, where $a,b \in \square$, stating clearly its domain.	563
	where $a,b \in \square$, stating clearly its domain.	[5]
	Solution	
	(i) largest $k = 0$.	
	When $k = 0$,	
	$y = -\left(4x - x^2\right), x < 0$	
	$y = (x-2)^2 - 4$	
	$x = 2 \pm \sqrt{y+4}$	
	$x = 2 - \sqrt{y+4} (\because x < 0)$	
	$f^{-1}: x \mapsto 2 - \sqrt{x+4}, x > 0$	
	$(\mathbf{ii}) \mathbf{R}_{\mathbf{f}} = (0, \infty)$	
	$D_g = (-4, \infty)$	

	Since $R_f \subseteq D_g$, so gf exists.	
	$(-\infty,0)$ \xrightarrow{f} $(0,\infty)$ \xrightarrow{g} $(2,\infty)$	
	So $R_{gf} = (2, \infty)$	
	$gf(x) = g(x^2 - 4x) (\because x < 0)$	
	$=\sqrt{x^2-4x+4}$	
	$=\sqrt{\left(x-2\right)^2}$	
	$=2-x, \left(:: D_{gf} = (-\infty, 0)\right)$	
	$\mathrm{D}_{\mathrm{gf}} = \left(-\infty, 0\right)$	
10	(a) The curve C is defined by the parametric equations	
	$x = \ln t, y = \frac{t^3 + t}{t + 1} \text{where } t > 0.$	
	Another curve L is defined by the equation $y = e^{2x}$. The graphs of C and L are	
	shown in the diagram below.	
	$ \begin{array}{c} L \\ C \\ 0 \end{array} $	
	Find the exact area of the region bounded by C , L and the line $x = \ln 2$, giving your answer in the form $\ln b$ where b is a constant to be determined.	[5]
	(b) The curves V and W have equations $2y = (x-1)^2 + 4$ and $y = 2x^2$ respectively. The region in the first quadrant enclosed by the curves and the y-axis is denoted by S .	
	Find the exact volume of the solid generated when the region S is rotated through 2π radians about the y -axis.	[4]
	Solution dr. 1	
	(a) $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}$	
	ui i	

1-2 1-2	I
Area of the region = $\int_{0}^{m^2} e^{2x} dx - \int_{0}^{m^2} y dx$	
$= \int_{0}^{\ln 2} e^{2x} dx - \int_{1}^{2} \left(\frac{t^{3} + t}{t + 1} \right) \left(\frac{1}{t} \right) dt$	
$= \left[\frac{1}{2}e^{2x}\right]_0^{\ln 2} - \int_1^2 \frac{t^2 + 1}{t + 1} dt$	
$= \left[\frac{1}{2}e^{2x}\right]_0^{\ln 2} - \int_1^2 t - 1 + \frac{2}{t+1}dt$	
$= \left[\frac{1}{2}e^{2x}\right]_{0}^{\ln 2} - \left[\frac{t^{2}}{2} - t + 2\ln(t+1)\right]_{1}^{2}$	
$= \left(\frac{1}{2}e^{2\ln 2} - \frac{1}{2}\right) - \left[\left(\frac{2^2}{2} - 2 + 2\ln(2+1)\right) - \left(\frac{1^2}{2} - 1 + 2\ln(1+1)\right)\right]$	
$= \left(2 - \frac{1}{2}\right) - \left[\left(2 - 2 + 2\ln 3\right) - \left(\frac{1}{2} - 1 + 2\ln 2\right)\right]$	
$= \frac{3}{2} - 2\ln 3 - \frac{1}{2} + 2\ln 2$	
$=1+2\ln\frac{2}{3}$	
$= \ln e + \ln \frac{4}{9}$	
$= \ln\left(\frac{4e}{9}\right) \text{ where } b = \frac{4e}{9}$	
(b) $y = 2x^{2}$ $y = \frac{1}{2}(x-1)^{2} + 2$ $y = \frac{1}{2}(x-1)^{2} + 2$ $y = \frac{1}{2}(x-1)^{2} + 2$	

	Required Volume = $\pi \left[\int_{0}^{2} \frac{y}{2} dy + \int_{2}^{\frac{5}{2}} (1 - \sqrt{2y - 4})^{2} dy \right]$	
	$= \pi \left\{ \left[\frac{y^2}{4} \right]_0^2 + \int_2^{\frac{5}{2}} \left(1 - 2\sqrt{2y - 4} + 2y - 4 \right) dy \right\}$	
	$= \pi + \pi \int_{2}^{\frac{5}{2}} \left(-2\sqrt{2y - 4} + 2y - 3 \right) dy$	
	$= \pi + \pi \left[\frac{-2(2y-4)^{\frac{3}{2}}}{2(\frac{3}{2})} + y^2 - 3y \right]_2^{\frac{5}{2}}$	
	$= \pi + \pi \left[-\frac{2}{3} (2y - 4)^{\frac{3}{2}} + y^2 - 3y \right]_2^{\frac{5}{2}}$	
	$= \pi + \pi \left[\left(-\frac{2}{3} \left(2 \left(\frac{5}{2} \right) - 4 \right)^{\frac{3}{2}} + \left(\frac{5}{2} \right)^{2} - 3 \left(\frac{5}{2} \right) \right) - \left(-\frac{2}{3} \left(2(2) - 4 \right)^{\frac{3}{2}} + \left(2 \right)^{2} - 3(2) \right) \right]$	
	$=\pi+\frac{\pi}{12}$	
	$=\frac{13\pi}{12}$ cubic units	
	12	
11	It is given that $\frac{1-N}{(N+1)(N+2)(N+3)} = \frac{1}{N+1} - \frac{3}{N+2} + \frac{2}{N+3}$.	
	(i) Find S_n in terms of n , where $S_n = \sum_{r=1}^n \frac{4r-4}{(r+1)(r+2)(r+3)}$.	[3]
	(ii) Hence find S_{∞} , stating clearly the reason.	[2]
	(iii) Using the result in part (i),	[-]
	(a) find $\sum_{r=1}^{n} \frac{4r}{(r+2)(r+3)(r+4)}$ in terms of n ,	[2]
	(b) deduce that $\sum_{r=11}^{n} \frac{r-1}{(r+2)^3} < \frac{11}{156}$.	[3]
	Solution	
	(i) $S_n = \sum_{r=1}^n \frac{4r-4}{(r+1)(r+2)(r+3)}$	
	$= -4 \sum_{r=1}^{n} \frac{1-r}{(r+1)(r+2)(r+3)}$ $= -4 \sum_{r=1}^{n} \left[\frac{1}{r+1} - \frac{3}{r+2} + \frac{2}{r+3} \right]$	

$\left(\frac{1}{2} - \frac{3}{3} + \frac{2}{4}\right)$	
$+(\frac{1}{3}-\frac{3}{4}+\frac{2}{5})$	
$+(\frac{1}{4}-\frac{3}{5}+\frac{2}{6})$	
=-4 $+(5-6+7)$ $+$	
$+(\frac{1}{n-1}-\frac{3}{n}+\frac{2}{n+1})$	
$+(\frac{1}{n}-\frac{3}{n+1}+\frac{2}{n+2})$	
$\left(+\left(\frac{1}{n+1}-\frac{3}{n+2}+\frac{2}{n+3}\right)\right)$	
$S_n = \frac{2}{3} + \frac{4}{n+2} - \frac{8}{n+3}$	
$\frac{n}{3}$ $\frac{n+2}{4}$ $\frac{n+3}{4}$	
(ii) As $n \to \infty$, $\frac{4}{n+2} \to 0$ and $\frac{8}{n+3} \to 0$	
$\therefore S_{\infty} = \frac{2}{3} \text{(deduced)}$	
(iiia)	
$\sum_{r=1}^{n} \frac{4r}{r}$	
$= \sum_{r=1}^{n} \frac{4r}{(r+2)(r+3)(r+4)}$ $= \sum_{r=2}^{n+1} \frac{4r-4}{(r+1)(r+2)(r+3)}$ (replace r by $r-1$)	
$=\sum_{n=1}^{n+1} \frac{4r-4}{n}$	
$=\frac{2}{r-2}(r+1)(r+2)(r+3)$	
$-\frac{n+1}{2}$ $4r-4$ $4(1)-4$	
$= \sum_{r=1}^{n+1} \frac{4r-4}{(r+1)(r+2)(r+3)} - \frac{4(1)-4}{(1+1)(1+2)(1+3)}$	
$=\frac{2}{3}+\frac{4}{n+3}-\frac{8}{n+4}$	
(iiib) For $r > 1$,	
$r^2 + 4r + 4 > r^2 + 4r + 3$	
$(r+2)^3 > (r+1)(r+2)(r+3)$	
$\sum_{n=1}^{\infty} r-1$ $1\sum_{n=1}^{\infty} 4r-4$	
$\sum_{r=11}^{n} \frac{r-1}{(r+2)^3} < \frac{1}{4} \sum_{r=11}^{n} \frac{4r-4}{(r+1)(r+2)(r+3)}$	
$\left[\sum_{r=1}^{n} \frac{r-1}{\left(r+2\right)^{3}} < \frac{1}{4} \left[\sum_{r=1}^{n} \frac{4r-4}{\left(r+1\right)\left(r+2\right)\left(r+3\right)} - \sum_{r=1}^{10} \frac{4r-4}{\left(r+1\right)\left(r+2\right)\left(r+3\right)} \right]$	
$\sum_{r=11}^{n} \frac{r-1}{\left(r+2\right)^{3}} < \frac{1}{4} \left[\left(\frac{2}{3} + \frac{4}{n+2} - \frac{8}{n+3} \right) - \left(\frac{2}{3} + \frac{4}{12} - \frac{8}{13} \right) \right]$	
$\sum_{r=1}^{n} \frac{r-1}{(r+2)^3} < \frac{1}{4} \left[\frac{11}{39} + \frac{4}{n+2} - \frac{8}{n+3} \right]$	
$r=11(r+2) + \lfloor 35 + n+2 + n+3 \rfloor$	

	$\sum_{r=11}^{n} \frac{r-1}{(r+2)^3} < \frac{11}{156} - \frac{n+1}{(n+2)(n+3)}$	
	$\sum_{r=11}^{n} \frac{r-1}{(r+2)^3} < \frac{11}{156} \left(\because \frac{n+1}{(n+2)(n+3)} > 0 \text{ as } n > 0 \right)$	
12	Sketch on a single Argand diagram the loci of $ z+3+4i =5$ and	
	z+3+4i = z+6 . (i) Hence indicate clearly on the Argand diagram the locus of z that satisfies the relation $ z+3+4i \le 5$ and $ z+3+4i = z+6 $.	[3]
	(ii) Given that $-\pi < \arg(z+3+4i) \le \pi$, find the exact range of values of $\arg(z+3+4i)$.	[1]
	(iii) Find the exact value of z where $\left \arg(z+3+4i) \right $ is as large as possible.	[4]
	Solution (i) /Im(z)	
	z+3+4i = z+6 $ z+3+4i = 5$ Re(z)	
	(ii) $\cos\left(\alpha + \beta\right) = \frac{2.5}{5} = \frac{1}{2}$	
	So $\alpha + \beta = \frac{\pi}{3}$	
	And $\sin \alpha = \frac{2}{2.5} = \frac{4}{5}$ $\beta = \frac{\pi}{3} - \sin^{-1} \frac{4}{5}$	
	$\beta = \frac{\pi}{3} - \sin^{-1}\frac{4}{5}$	
	So range of $-\pi < \arg(z+3+4i) \le -\pi + \beta$ or $\pi - \left(\frac{\pi}{3} + \alpha\right) \le \arg(z+3+4i) \le \pi$	

	$-\pi < \arg(z+3+4i) \le -\frac{2\pi}{3} - \sin^{-1}(\frac{4}{5}) \text{ or } \frac{2\pi}{3} - \sin^{-1}\frac{4}{5} \le \arg(z+3+4i) \le \pi$	
	(iii) $\cos \alpha = \frac{3}{5} = \frac{2.5}{k}$ $\cos \alpha = \frac{3}{5} = \frac{2.5}{k}$ $k = \frac{25}{6}$	
	$\cos \alpha = \frac{3}{5} = \frac{2.5}{k}$	
	$k = \frac{25}{6}$	
	Value of z is $\left(-\frac{43}{6}\right)$ - 4i	
13	A curve is defined by the equation $y^2 = \ln(e - x)$, $y > 0$ and $x < e$.	
13		
	(i) Show that $2y \frac{dy}{dx} + e^{-y^2} = 0$.	[2]
	(ii) By further differentiation, show that $(2+4y^2)\left(\frac{dy}{dx}\right)^2 + 2y\frac{d^2y}{dx^2} = 0$.	[2]
	(iii) Hence, find the Maclaurin's series of y, up to and including the term in x^3 ,	[2]
	giving your answers in exact form. (iv) Find the Maclaurin's series of the curve defined by the equation	[3]
	$[y(2-x)]^2 = \ln(1-x) + 1.$	[3]
	Solution (i) Differentiating implicitly,	
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\mathrm{e}-x}$	
	From $y^2 = \ln (e - x)$,	
	$\Rightarrow e^{y^2} = e - x$	
	$\Rightarrow \frac{-1}{e - x} = -e^{-y^2}$	
	$\therefore 2y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\mathrm{e} - x}$	
	$\Rightarrow 2y \frac{dy}{dx} = -e^{-y^2} \Rightarrow 2y \frac{dy}{dx} + e^{-y^2} = 0$ (ii) Differentiating implicitly,	
	(ii) Differentiating implicitly,	
	$\left(2\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 2y\mathrm{e}^{-y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
	Since $e^{-y^2} = -2y \frac{dy}{dx}$, the equation becomes	
	$2\left(\frac{dy}{dx}\right)^2 + 2y\frac{d^2y}{dx^2} + 4y^2\left(\frac{dy}{dx}\right)^2 = 0$	
	Factorizing,	
	$\left(2+4y^2\right)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2+2y\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=0$	

(iii) Differentiating implicitly,	
$(8y)\left(\frac{dy}{dx}\right)^{3} + (2+4y^{2})2\left(\frac{dy}{dx}\right)\frac{d^{2}y}{dx^{2}} + 2\left(\frac{dy}{dx}\right)\frac{d^{2}y}{dx^{2}} + 2y\frac{d^{3}y}{dx^{3}} = 0$	
When $x = 0$,	
$y^2 = \ln e = 1 \implies y = 1 \text{ (since } y > 0).$	
$2\frac{dy}{dx} = \frac{-1}{e} \Rightarrow \frac{dy}{dx} = -\frac{1}{2}e^{-1}$	
$\left(2+4\right)\left(-\frac{1}{2}e^{-1}\right)^{2} + 2\frac{d^{2}y}{dx^{2}} = 0 \Rightarrow \frac{d^{2}y}{dx^{2}} = -\frac{3}{4}e^{-2}$	
$8\left(-\frac{1}{2}e^{-1}\right)^{3} + 14\left(-\frac{1}{2}e^{-1}\right)\left(-\frac{3}{4}e^{-2}\right) + 2\frac{d^{3}y}{dx^{3}} = 0 \Rightarrow \frac{d^{3}y}{dx^{3}} = -\frac{17}{8}e^{-3}$	
Hence, the Maclaurin's series of the curve is	
$1 - \frac{1}{2}e^{-1}x - \frac{3}{4}e^{-2}\frac{x^2}{2!} - \frac{17}{8}e^{-3}\frac{x^3}{3!} + \dots = 1 - \frac{1}{2e}x - \frac{3}{8e^2}x^2 - \frac{17}{48e^3}x^3 + \dots$	
(iv) By replacing x with ex in the original equation,	
$y^{2} = \ln (e - ex) = \ln(e(1 - x)) = \ln (1 - x) + 1$	
Hence, replacing x with ex in the Maclaurin's series,	
$y(2-x) = 1 - \frac{1}{2}x - \frac{3}{8}x^2 - \frac{17}{48}x^3 + \dots$	
$\Rightarrow y = (2-x)^{-1} \left(1 - \frac{1}{2}x - \frac{3}{8}x^2 - \frac{17}{48}x^3 + \dots \right)$	
$\Rightarrow y = \frac{1}{2} (1 - \frac{x}{2})^{-1} \left(1 - \frac{1}{2} x - \frac{3}{8} x^2 - \frac{17}{48} x^3 + \dots \right)$	
$\Rightarrow y = \frac{1}{2} \left(1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \dots \right) \left(1 - \frac{1}{2}x - \frac{3}{8}x^2 - \frac{17}{48}x^3 + \dots \right)$	
$\Rightarrow y = \frac{1}{2} \left(1 + \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} - \frac{1}{2}x - \frac{1}{4}x^2 - \frac{1}{8}x^3 - \frac{3}{8}x^2 - \frac{3}{16}x^3 - \frac{17}{48}x^3 + \dots \right)$	
$\Rightarrow y = \frac{1}{2} - \frac{3}{16}x^2 - \frac{13}{48}x^3 + \dots$	
	Ī.

END OF PAPER