
SQL Databases

CPDD Computer Education Unit Version: Mar 2018
1

 Name: __________________________ () Class: _________ Date: _________

Lesson 4: Using SQLite in Python

Instructional Objectives:

By the end of this task, you should be able to:

 Use a programming language to work with SQL databases

 Use sqlite3.connect() to open or create a SQLite file

 Use sqlite3.Connection.execute() to run SQL

 Use sqlite3.Cursor.fetchone() and sqlite3.Cursor.fetchall() to

retrieve database rows

 Set sqlite3.Connection.row_factory to sqlite3.Row in order to simplify

the reading of values from retrieved database rows

 Use sqlite3.Connection.commit() to save changes and

sqlite3.Connection.close() to close SQLite files

Python and SQLite

In the previous lessons, you used DB Browser for SQLite to create SQLite databases
and run SQL queries. This is because DB Browser's graphical user interface makes it
easy to experiment with SQL and examine the results.

However, DB Browser is not an appropriate program to use if we want to customise
or restrict how the contents of a database are modified or presented. Suppose we
have a SQLite database that stores information about the books in a library and we
want to let users search the database. We should not use DB Browser for this purpose
as malicious users can also use DB Browser to run harmful SQL (e.g., DROP TABLE).

The interface of DB Browser may also be confusing to users who are not familiar with
databases or SQLite.

Instead, developers typically write custom programs to control how users interact with
a database. The program may let the user complete a form or choose from a menu to
describe what he/she wants to do. Based on the user's input, the program would then
generate the appropriate SQL and run it to produce the intended result. This prevents
users from modifying the database in ways that are unexpected to the developer.

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
2

In this lesson, we will learn how to write Python programs that can interact with SQLite
databases using the built-in sqlite3 module.

1 A public library uses an SQLite database to store information about its books and

the year when each book was published. The library wishes to let users specify
a year and query for the titles of all books published before that year.

 Which of the following is NOT a valid reason why DB Browser should be avoided

for this purpose?

A Users may use DB Browser to insert fake data into the database.

B Users may not know how to perform the query using DB Browser.

C Users may use DB Browser to perform a query that returns nothing.

D Users may use DB Browser to drop tables from the database.

Loading an SQLite Database

To open or create a SQLite database, import sqlite3 and call sqlite3.connect().

This function accepts a str argument that contains the path and filename of an SQLite

database file and returns a connection object. If no path is included, the SQLite file is
assumed to be in the same directory as the Python file. Furthermore, if the specified
file does not exist, an empty file will be created with the given filename instead.

After all operations with the database are complete, the close() method of the

connection object should then be called. This ensures that the database file is closed
properly but does not save any modifications that have been made to the data.

For example, the following Python program tries to load an SQLite database named
example.db in the same directory as the program. If such a file does not exist, an

empty file named example.db will be created instead:

Program 1: load_example.py

1
2
3
4

import sqlite3

connection = sqlite3.connect("library.db")
connection.close()

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
3

Executing SQL in Python

After loading an SQLite file and getting a connection, we can execute SQL by calling
the connection object's execute() method with a str containing the SQL we wish to

run. If any data is modified, we can also save our changes by calling the connection
object's commit() method. For instance, the following Python program creates a new

table named Book in a new SQLite file named library.db (remove library.db from

the folder first if it is present):

Program 2: create_example.py

1
2
3
4
5
6
7

import sqlite3

connection = sqlite3.connect("library.db")
connection.execute("CREATE TABLE Book " +
 "(ID INTEGER PRIMARY KEY, Title TEXT)")
connection.commit()
connection.close()

After running the program, we can open library.db using DB Browser to check that

a Book table was indeed created:

However, if we try to run the program again, we will get the following error:

Traceback (most recent call last):
 File "create_example.py", line 5, in <module>
 "(ID INTEGER PRIMARY KEY, Title TEXT)")
sqlite3.OperationalError: table Book already exists

This demonstrates that calling execute() is just like running regular SQL commands

in the "Execute SQL" tab of DB Browser. Any errors caused by running the SQL (such
as the error telling us the Book table already exists) are reported as Python exceptions

and can be handled as usual.

new table is

created

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
4

Committing Changes and Rolling Back

Now, let us try using INSERT to put data into the Book table:

Program 3: insert_example_incomplete.py

1
2
3
4
5
6

import sqlite3

connection = sqlite3.connect("library.db")
connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(0, 'Example Book')")
connection.close()

This program runs with no errors. However, if we open library.db using DB Browser,

we find that the inserted data is missing:

What happened to the data? It was discarded because we did not call commit() on

the connection object. Using INSERT, UPDATE or DELETE with the sqlite3 module

implicitly opens a transaction such that modifications to the data are not saved until
the commit() method is called:

Program 4: insert_example.py

1
2
3
4
5
6
7

import sqlite3

connection = sqlite3.connect("library.db")
connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(0, 'Example Book')")
connection.commit()
connection.close()

inserted data

is missing!

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
5

With a call to commit() added on line 6, the data is inserted and saved correctly:

This behaviour is useful as sometimes we may wish to discard any modifications to
the database's data since the last transaction was opened. For instance, in our library
example we may start the process of placing a book on loan but discover partway that
the borrower has already reached his/her limit of borrowed books. We can discard all
the changes made since the transaction was opened by calling the connection object's
rollback() method.

The following example demonstrates how rollback() works. In this example, the first

two INSERT statements are rolled back so they have no effect on the database. On

the other hand, the last INSERT statement is committed so it does affect the database:

Program 5: rollback_example.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import sqlite3

connection = sqlite3.connect("library.db")

connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(1, 'Rollback Book')")
connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(2, 'Also Rollback Book')")
connection.rollback()

connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(3, 'Committed Book')")
connection.commit()

connection.close()

data is inserted

correctly

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
6

This process is illustrated by the following diagram:

Comparing the contents of the Book table before and after running the program shows

that the first two INSERT statements are indeed ignored:

Before After

Transaction (Rolled Back)

1 Row
Example Book

2 Rows
Example Book
Rollback Book

3 Rows
Example Book
Rollback Book
Also Rollback Book

Transaction (Committed)

2 Rows
Example Book
Committed Book

1 Row
Example Book

INSERT INSERT

rollback()

INSERT

2 Rows
Example Book
Committed Book

commit()

only committed

transaction is saved

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
7

Warning: Starting with Python 3.6, commands that control the database's structure
such as CREATE TABLE and DROP TABLE do not open a transaction and will generally

take effect immediately. This means that, by default, it is not possible to roll back
such changes automatically.

Enclosing User Input in SQL Safely

When generating SQL commands, we often need to include some data that is provided
by the user. For instance, we may want the user to enter the ID of a book to delete
from the database. This requires us to generate a DELETE command with the entered

ID in its WHERE clause.

We may be tempted to use str concatenation in order to generate the required SQL

command. Unfortunately, this is insecure as special characters or keywords in the
user's input are not escaped and malicious users can take advantage of this to inject
his/her own SQL commands.

Instead, we should use parameter substitution to safely include data that is provided
by the user. To do this, we use the question-mark character ? as a placeholder in the

SQL for any data that is provided by the user. We then provide a second argument to
execute() that is a tuple of values that will replace the placeholders. This ensures

that the provided values are escaped properly and cannot be misinterpreted as SQL.

For example, the following program safely asks for the ID of a book and deletes the
corresponding row from the database:

Program 6: delete_example.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import sqlite3

connection = sqlite3.connect("library.db")

Insert some rows first so we have something to delete
connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(4, 'Extra Book')")
connection.execute("INSERT INTO Book(ID, Title) " +
 "VALUES(5, 'Also Extra Book')")
connection.commit()

Ask for ID and delete the corresponding row
book_id = input("Enter Book ID to delete: ")
connection.execute("DELETE FROM Book WHERE ID = ?", (book_id,))
connection.commit()

connection.close()

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
8

Parameter substitution follows the same order in which the placeholders appear in the
SQL. This is illustrated by the following diagram:

2 The following is an unsafe program that asks for the ID of a book and deletes the

corresponding row from the database:

import sqlite3

connection = sqlite3.connect("library.db")
book_id = input("Enter Book ID to delete: ")
connection.execute("DELETE FROM Book WHERE ID = " + book_id)
connection.commit()
connection.close()

 Can you suggest an input for book_id that will delete all the rows in Book?

3 You want to write a program that lets a user update the title of a book. To do this,

you ask the user for two values: the ID of the book to update (in variable book_id)

and the new title of the book (in variable title). The connection to the SQLite

database is stored in variable connection.

 Which of the following lines of code safely and correctly executes the required

SQL to update the book's title?

A connection.execute("UPDATE Book SET Title=? WHERE ID=?",
 {book_id: title})

B connection.execute("UPDATE Book SET Title=? WHERE ID=?",
 (book_id, title))

C connection.execute("UPDATE Book SET Title=? WHERE ID=?",
 title, book_id)

D connection.execute("UPDATE Book SET Title=? WHERE ID=?",
 (title, book_id))

execute("DELETE FROM Book WHERE ID > ? AND ID < ?", (2, 4))

1st tuple item replaces

1st placeholder

2nd tuple item replaces

2nd placeholder

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
9

Retrieving Data from Queries

As you have already learned, the SELECT command is used to select data from the

database. When you run a SELECT command in DB Browser, the selected rows are

usually displayed in a table below the SQL that was executed:

In Python, however, you must access the selected rows using a cursor object that is
returned by the execute() method. This cursor object can go through the selected

rows, one by one, using either a for-in loop or the fetchone() method. Each

iteration returns a tuple of the columns in the current row.

For instance, using the same library example, the following program will print out all
the book titles in the Book table:

Program 7: forloop_example.py

1
2
3
4
5
6
7

import sqlite3

connection = sqlite3.connect("library.db")
cursor = connection.execute("SELECT ID, Title FROM Book")
for row in cursor:
 print(row[1]) # Title is second item in the tuple
connection.close()

For the fetchone() method, each call to fetchone() will advance the cursor to the

next row, so calling fetchone() repeatedly will iterate through the selected rows until

selected rows

appear here

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
10

the cursor reaches the end and returns None. Hence, the previous program can also

be written like this:

Program 8: fetchone_example.py

1
2
3
4
5
6
7
8
9

import sqlite3

connection = sqlite3.connect("library.db")
cursor = connection.execute("SELECT ID, Title FROM Book")
row = cursor.fetchone()
while row is not None:
 print(row[1]) # Title is second item in the tuple
 row = cursor.fetchone()
connection.close()

Alternatively, instead of going through the rows one by one, we may wish to fetch all
the rows at once and keep them in a list. We can do this calling the fetchall()

method instead. This method returns a list of tuples with each tuple containing

the selected columns for a single row.

For instance, the following program demonstrates yet another way to print out all the
book titles in the Book table using fetchall():

Program 9: fetchall_example.py

1
2
3
4
5
6
7
8

import sqlite3

connection = sqlite3.connect("library.db")
cursor = connection.execute("SELECT ID, Title FROM Book")
rows = cursor.fetchall()
for row in rows:
 print(row[1]) # Title is second item in the tuple
connection.close()

In the three previous examples, each row was retrieved as a tuple of values based

on the order in which the columns were selected. This explains why row[1] is used to

get the Title as the Title column is the second column listed in the SELECT statement.

Alternatively, we can configure the SQLite connection so that each row is retrieved as
a dict mapping column names to values instead. To do this, we set the connection

cursor = conn.execute("SELECT ID, Title, ID+1 FROM Book")

row = cursor.fetchone() # (0, "Example Book", 1)

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
11

object's row_factory attribute to the built-in sqlite3.Row class. This lets us change

the ordering of columns in our SELECT statements without having to modify the code

for extracting individual column values.

For example, the following program prints out all the book titles in the Book table by

retrieving each row as a dict of values:

Program 10: row_factory_example.py

1
2
3
4
5
6
7
8

import sqlite3

connection = sqlite3.connect("library.db")
connection.row_factory = sqlite3.Row
cursor = connection.execute("SELECT ID, Title FROM Book")
for row in cursor:
 print(row["Title"]) # row is now a dictionary
connection.close()

4 Modify Program 9 such that it prints out all the IDs in the Book table instead.

5 The SQL on line 5 of Program 10 is replaced with one of the following options.

Which option would cause an error on line 7 when the program is run?

A SELECT * FROM Book

B SELECT ID FROM Book

C SELECT Title FROM Book

D SELECT Title, ID FROM Book

6 The following program is supposed to let the user insert data into the Book table.

Complete the code on line 12 of the program to perform the insertion.

conn.row_factory = sqlite3.Row
cursor = conn.execute("SELECT ID, Title, ID+1 FROM Book")

row = cursor.fetchone() # { "ID": 0,
 # "Title": "Example Book",
 # "ID+1": 1 }

print(row["ID"], row["Title"], row["ID+1"])

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import sqlite3

connection = sqlite3.connect("library.db")
while True:
 try:
 book_id = int(input("Enter Book ID: "))
 except ValueError:
 print("Not a valid ID")
 continue
 title = input("Enter Title: ")
 try:

 connection.commit()
 except sqlite3.DatabaseError:
 print("Database error (e.g., duplicate ID)")
 continue
 print("Insertion successful!")
 if input("Quit (Y/N)? ").upper() == "Y":
 break
connection.close()

7 Which of the following programs correctly prints out all titles in the Book table in

alphabetical order?

A

import sqlite3

connection = sqlite3.connect("library.db")
connection.row_factory = sqlite3.Row
cursor = connection.execute("SELECT Title FROM Book " +
 "WHERE ID=?", (0,))
for row in cursor:
 print(row["Title"])
connection.close()

B

import sqlite3

connection = sqlite3.connect("library.db")
connection.row_factory = sqlite3.Row
cursor = connection.execute("SELECT Title FROM Book " +
 "ORDER BY ID")
for row in cursor:
 print(row["Title"])
connection.close()

C

import sqlite3

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
13

connection = sqlite3.connect("library.db")
cursor = connection.execute("SELECT Title FROM Book " +
 "ORDER BY Title")
for row in cursor:
 print(row["Title"])
connection.close()

D

import sqlite3

connection = sqlite3.connect("library.db")
cursor = connection.execute("SELECT Title FROM Book " +
 "ORDER BY Title")
for row in cursor:
 print(row[0])
connection.close()

8 Create a new SQLite file using DB Browser named loans.db and create three

tables using the following SQL:

CREATE TABLE Borrower (
 ID INTEGER PRIMARY KEY,
 Name TEXT NOT NULL
);
CREATE TABLE Book (
 ID INTEGER PRIMARY KEY,
 Title TEXT NOT NULL
);
CREATE TABLE Loan (
 ID INTEGER PRIMARY KEY AUTOINCREMENT,
 BorrowerID INTEGER NOT NULL,
 BookID INTEGER NOT NULL,
 FOREIGN KEY (BorrowerID) REFERENCES Borrower(ID),
 FOREIGN KEY (BookID) REFERENCES Book(ID)
);

You are to write a Python program to insert loans into this database. The
program should do the following for each new loan:

 Ask for the borrower's ID.

 If a borrower with that ID does not exist in the database, ask for the
borrower's name and insert it into the Borrower table before proceeding.

 Ask for the book's ID.

 If a book with that ID does not exist in the database, ask for the book's
title and insert it into the Book table before proceeding.

 If the book is already on loan, print an error. Otherwise, insert a new row
into the Loan table to record that the borrower has loaned the book.

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
14

Some parts of the program has been written for you. Complete the rest of the
program. (You do not need to perform input validation.)

import sqlite3

while True:
 conn = sqlite3.connect("loans.db")

 # Get Borrower ID
 borrower_id = int(input("Enter Borrower ID: "))
 cursor = conn.execute("SELECT COUNT(*) FROM Borrower " +
 "WHERE ID = ?", (borrower_id,))
 if cursor.fetchone()[0] == 0:
 name = input("Enter Borrower Name: ")
 conn.execute("INSERT INTO Borrower(ID, Name) " +
 "VALUES(?, ?)", (borrower_id, name))

 # ...fill in the rest of the code below...

 conn.close()
 if input("Quit (Y/N)? ").upper() == "Y":
 break

sqlite3 Module Summary

Name Description

SQL Databases

CPDD Computer Education Unit Version: Mar 2018
15

connect(filename) Creates a Connection object using SQLite file

with the given filename

Row Can be used as a Connection object’s

row_factory so fetchone() returns a dict

mapping column names to field values instead of
returning a tuple of values

Connection Class Summary

Name Description
commit() Saves changes to (but does not close) SQLite file

close() Closes (but does not save changes to) SQLite file

execute(sql) Runs the given SQL command on the database

and returns a Cursor object

execute(sql, values_tuple) Runs the given SQL command (first argument)

after substituting question marks with the
corresponding values in the given tuple (second
argument) and returns a Cursor object.

rollback() Undoes any changes made since the last call to

commit().

row_factory Can be set to Row so fetchone() returns a dict

mapping column names to field values instead of
returning a tuple of values

Cursor Class Summary

Name Description
fetchone() Returns a tuple of values from next row of the

query result or None is there are no more values

Note: This function returns a dict mapping

column names to field values instead if
row_factory is set to Row

fetchall() Calls fetchone() repeatedly until it returns None

and returns a list of the non-None results

