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1(ii) 
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1(iii) 
Since im a M   and im b M  , thus i
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By AM-GM inequality, 
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Squaring both sides: 
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2(ii) 
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Hence, 
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2(iii) 
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 Tangent at (4, 2)−  is perpendicular to the line y mx= . 

When 4x = , 2y = − , 
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Substitute into DE:  4 42( 8)e ( ) 4 4 2(16) em− − = + +  
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3(i) 
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which implies Taylor’s theorem holds for the case 0n = . 

 

 

3(ii) Assume Taylor’s theorem holds for  0n k
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which establishes the theorem for the case 1n k= +  and hence proves Taylor’s 

theorem. 

 

 

3(iii) For x close to a, 0x a−  . Then 

( ) ( )
( )

( )
( )

( )
2f f

f f + +
1! 2!

a a
x a x a x a

 
− −=  approximately. 

Substitute ( )f sinx x= , 1.6x = , 
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a =  into the above equation: 
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3(iv) Since ˆ0 x x   where x̂  is some finite positive integer, for ˆ2n x , 
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The last inequality holds since 
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3(v) 
For 0x = , lim lim 0 0
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3(vi) 
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Remark:  
 

In the above computation, we put in 0a = . For any arbitrary a , Taylor’s 

theorem gives 
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So the choice of a is arbitrary. 

 



 
 

4(i) Since p is prime and 1 1k p −  , ( )gcd 1, 1k p− = . 

There exist ,a b  such that ( )1 1pa k b+ − = . 

 

For any m , ( )( ) ( )( )1 1 1p a m k k b mp− − + − + = . 

Choose m large enough such that : 0ky b mp= +   and ( ): 1kx a m k= − − . 

Hence, there exist ,k kx y   with 0ky   such that ( )1 1k kpx k y+ − = . 

 

 

4(ii) Since ( ) ( )1 | 1 kk k k y− − , ( )1 0k ku k k y= −   (mod 1k − ). 

From part (i), ( )1 1k kpx k y+ − =  implies ( )1 1kk y−   (mod p), and so, 

( )1k ku k k y k= −   (mod p). 

 

 

4(iii) 
Suppose 

1 1
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i j


− −
 (mod p) for some 2 i j p   . 

Hence, in modulo p, we have the following. 
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Since 2 i j p   , i j=  and so for each 2 k p  , each 
1

k
u

k −
 is distinct in modulo p. 

 

 

4(iv) 
Let 1 1v =  and for each 2 1k p  − , let kv  be the remainder when 

1

ku

k −
 is divided by 

p. Note that 
1

p

p

u
py p

p
= 

−
 (mod p), and so, we define pv p= . 

 

Only 1 1v   (mod p). From part (i), for all 2 k p  , ( )1 1kk y−   (mod p) and it is clear 

that 1ky  . Hence, 1k kv ky=   (mod p) for all 2 k p  . 

Together with the result in part (ii), we see that all kv ’s, 1 k p  , are unique and form 

the set  1, 2, , p . 
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( ) ( )( )
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2 3
1 2

...
...

1 !

2 3 ...
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k
k

u u u
v v v
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=
−

  


−
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This shows that all 1v , 1 2v v , 1 2 3v v v , …, and 1 2 ... pv v v  leave different remainders when 

divided by p. 

 
Alternative to working in grey: 

( )1 1 mod
1

k
k k k k k

u
v ky y px y p

k
= = = + −  +

−
 

Hence ( )1 modkv p  since :ky b mp= +  in (i) and b is not a multiple of p 

 

Or 

 



 
 

From (i), there exist ,k kx y  , : 0ky b mp= +   such that ( )1 1k kpx k y+ − = . Hence

( )1 1kk y−   (mod p). 

1k kky y +  (mod p) 

      ( )1 mod p    since :ky b mp= +  in (i) and b is not a multiple of p 

 

4(v) A permutation is 1, 2, 7, 5, 4, 10, 3, 9, 8, 6, 11. 

 

Check that 1v , 1 2v v , 1 2 3v v v , …, and 1 2 11...v v v  in modulo 11 are unique: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. 

 

 

1 1v =  

( )

( )
( )

( )

2
1 2

2 1 !

2
mod11

2 1 !

2 mod11

u
v v =

−


−
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2 2v =   

 

( )2 7 3 mod11      3 7v =  

( )

( )

2 7 5 3 5 mod11

4 mod11

   


 4 5v =  

( )4 4 5 mod11   5 4v =  

( )5 10 6 mod11   6 10v =  

( )6 3 7 mod11   7 3v =  

( )7 9 8 mod11   8 9v =  

( )8 8 9 mod11   9 8v =  

( )9 6 10 mod11   10 6v =  

11 11v =  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5(i) Simple sketch of the two graphs to show that  f g f gR R \ 0, 1 D D= = = = . 

Hence, fg and gf exist. 

 

 

5(ii) 
( ) ( )2 1 1 1 1

f 1 g
1 1 1

1
1

x x
x x

x x x

x

− −
= = = = − =

− −
−

−

 

( ) ( )2 1 1 1
g 1 1 f

1 1 1 1
1

x x x
x x

x x x

x

− −
= − = − = = =

− − −
−

. 

 

 

5(iii) Since  f g hR R \ 0, 1 D= = = , hf and hg exist. 

( ) ( ) ( )
1

h h h hf
1

x x x x x
x

 
+ =  + = 

− 
  -------- (1) 

Replace x with f(x) in (1): ( ) ( ) ( ) ( )2hf hg f f gx x x+ = =  -------- (2) 

(2) – (1): ( ) ( ) ( )hg h fx x x x− = −  -------- (3) 

Replace x with g(x) in (3):  

( ) ( ) ( ) ( ) ( )2hf hg fg g g fx x x x− = − =  -------- (4) 

(3) + (4): ( ) ( ) ( ) ( ) ( )hf h fg f gx x x x x x− = + − −  -------- (5) 

(1) – (5): ( ) ( ) ( ) ( )2h 2 fg f gx x x x x= − − +  

( )

( )( )( ) ( )

( )

( )

3

1 1 1 1
h 2 1

12 1
1 1

1 1 1
1

2 1

1 1 1

2 1

1

2 1

x x
x x

x

x
x x

x x x x x

x x

x x

x x

 
 
 = − − + −

−  
− −    

 
= + + − 

− 

+ − + − −
=

−

− +
=

−

 

 

 

5(iii) 
Alternatively, ( )

1
fg

1
1 1

x x

x

= =
 

− − 
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Since  f g hR R \ 0, 1 D= = = , hf and hg exist. 

( )
1

h h
1

x x
x

 
+ = 

− 
 ( ) ( )h hfx x x + =  

                                      ( ) ( ) ( )2hf hf fx x x + =  --- (1)     

and  ( ) ( ) ( )hg hfg gx x x+ =   ( ) ( ) ( )hg h gx x x+ =  --- (2) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

2

h hf

f hf by (1)

f hg

f g h      by (2)

x x x

x x x

x x x

x x x x

= −

 = − − 

= − +

= − +  −  

 

( ) ( ) ( )2h f gx x x x= − +  

  ( )
1 1 1

h 1
2 1

x x
x x

 
= − + − − 

 

 



 
 

6(a)(i) 1xy   (mod z) 

There exists m  such that 1xy mz= + . 

Since 1 xy mz= −  where ,y m , ( )gcd , 1x z = . 

 

 

6(a)(ii) 1x   (mod y) and 1x   (mod z) 

( )| 1y x −  and ( )| 1z x −  

Since there are no common factors greater than 1 between y and z, all the prime factors 

of y and z are contained in 1x − .  

Hence, ( )| 1yz x − , i.e. 1x   (mod yz). 

 

 

6(b)(i) Since 1ab   (mod c), 1ac   (mod b), and 1bc   (mod a), by part (a)(i), we have 

( ) ( ) ( )gcd , gcd , gcd , 1a b a c b c= = = .  

 

Claim: 1ab ac bc+ +   modulo a, b and c. 

Proof:  

( ) ( )

( ) ( )

( ) ( ) ( )

1 mod 1  mod

                                                1  mod

                                                1 mod   since 0 mod

ab c ab ac bc ac bc c

a b c c

c a b c c

  + +  + +

 + +

 + 

 

Similarly, 1  modulo ,ab ac bc a b+ +  . 

 

By part (a)(ii), since a, b and c are pairwise coprime,  

1ab ac bc+ +   (mod abc). 

 

Hence, 1ab ac bc kabc+ + = +  for some k +  since 1 a b c   . 

1 1 1 1
k

c b a abc
+ + = +  

1 1 1 1
1k k

a b c abc
+ + = +   . 

 

 

6bii By the result in part (b)(i),  

1 1 1 3
1

a b c a
 + +   since 1 a b c   . 

Note that 2a =  is the only integer solution greater than 1. 

 

Now, 
1 1 1

1
2 b c

 + +  and so, 
1 1 1 2

2 b c b
 +  . 

Also note that 3b =  is the only integer solution greater than 2a = . 

 

Now, 
1 1

6 c
  implies that 4c =  or 5c = . 

But since a, b and c are pairwise coprime, 5c = . 

Hence, ( ) ( ), , 2,3,5a b c =  is the only solution. 

 

 

 

 

 

 

 

 

 

 



 
 

7(a)(i) Consider the complementary case when the Primary 1 classroom holds at least 4 

tables. First, place 4 tables in the Primary 1 classroom. Distribute the remaining 16 

tables into all 6 rooms, and this can be done in 
16 5 21

5 5

+
=

   
   
   

 ways.  

Hence the required answer =  Total 
21 20 5 21

32781
5 5 5

+
− = − =
     
     
     

  

Alternatively 

The solution to the problem is similar to finding the number of integer solutions to 

1 2 3 4 5 6
20x x x x x x+ + + + + =  where 

1
0 3x   and 0

i
x   for each 2,3, 4,5,6i = . 

Now 
1

0 3x   implies that 
2 3 4 5 6

17 20x x x x x + + + +  .  

Since the number of non-negative integer solutions to 
2 3 4 5 6

x x x x x n+ + + + =  is 

4

4

n + 
 
 

, the required answer is 
17 4 18 4 19 4 20 4

32781
4 4 4 4

+ + + +
+ + + =

       
       
       

. 

 

 

 

 

 

 

 

 

 

 

7(a)(ii) The solution to the problem is similar to finding the number of integer 

solutions to 
1 2 3 4 5 6

20x x x x x x+ + + + + =  where 
5

3x  , 
6

3x   and 0
i

x   for 

each 1, 2,3, 4i = .  

Set  
5 5

3y x= − , 
6 6

3y x= − , 
i i

y x=  for each 1, 2,3, 4i = .  

Then the required number of integer solutions to 
1 2 3 4 5 6

20x x x x x x+ + + + + =  

is equal to the number of integer solutions to 
1 2 3 4 5 6

14x x x x y y+ + + + + = .  

Hence the answer is 
14 5 19

11628
5 5

+
= =

   
   
   

. 

 

 

 

 

 

 

 

 

7(a)(iii) Let 
1

A  be the event that the first, second, and third students are in ordered level, 
2

A  be 

the event that the second, third, and fourth student are in ordered level, 
3

A  be the event 

that the third, fourth, and fifth students are in ordered level, and 
4

A  be the event that 

the fourth, fifth and sixth students are in ordered level. By a combination of 

complementary counting and PIE, we have that our answer will be 
 

1 2 3 4

1 2 3

4

1 2 3 4

1

n

i i j i j k

i i j i j k

A A A A

S A A A A

S A A A A A A A A A A
=   

     

= −   

= − +  −   +     

 

6! 720S = =         

4

1

6
3! 4 480

3
i

i

A
=

=   =
 
 
 

    

1 2 1 3 1 4 2 3 2 4 3 4

6 6 6 6 6 6
2! 2! 2!

4 5 3 4 5 4

122

i j

i j

A A A A A A A A A A A A A A


 =  +  +  +  +  + 

=  + + +  + + 

=

           
           
           



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1 2 3 1 2 4 1 3 4 2 3 4

i j k
i j k

A A A

A A A A A A A A A A A A

 

 

=   +   +   +  


 

6 6
1 1

5 5

14

   
= + + +   
   

=

 

1 2 3 4 1A A A A   =  

1 2 3 4 720 480 122 14 1 349A A A A      = − + − + =  

 

7(b) Consider 4 boxes labelled 0, 1, 2 and 3. For each of the 9 integers in the solution set, 

place the integer m in box i if  (mod 4)m i= .  

By PP, there is at least one box with at least 
9

3
4

=
 
  

 integers in it. 

Let the box with 3 integers be box j.  

If we label these 3 integers 
p

m , 
q

m , 
r

m  as 4
p p

m n j= + , 4
q q

m n j= +  and 

4
r r

m n j= +  for some integers 
p

n , 
q

n , 
r

n , then the difference between any of these 

pairs is divisible by 4, i.e. 4( )p q p qm m n n− = − , and similarly for the other two 

pairs. 

 

 

7c First, start from Y and recognising each letter has 2 presiding letters considering a 

quadrant first). Next remove the four over-counting VICTORY. Number of ways is 
6 84 2 4 2 4 252 − = − = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

8(i) For 2n = , the grid contains the numbers 2,3,4,5,6,7  which has no cube.  

8(ii) 

 
                                                         x = 2 

Clearly, 
3 23 3 3 1 0x x x− − −   for all 2x  . That is, 2k = . 

 

 

8(iii) By way of contradiction, since 
31 1n = =  is a cube, we will exclude it and consider 

2n  .  

Suppose on the contrary, there exists a positive integer 2n   for which there is no 

cube in Peter’s grid. 

Let 
3m  be the largest cube strictly less than n. By hypothesis, the next cube ( )

3
1m+  

must be strictly more than 4n . 

That is, we have ( )
33   and  1 4m n m n +  .  

Firstly, note that if 1m = , then ( )
3

1 4 8 4 2m n n n+       which contradicts 

the assumption that 2n  . Thus 2m  .  

Putting the two inequalities above together, 

( )
3 3

3 2 3

3 2

1 4 4

3 3 1 4

3 3 3 1 0      (*)

m n m

m m m m

m m m

+  

 + + + 

 − − − 

 

But from (ii), 
3 23 3 3 1 0m m m− − −   for all 2m   which contradicts the above 

conclusion. Hence Peter’s claim is correct. 

 

 

8(iv) (a)  
32 4 2 8n n n      

(b)  
3 27

3 4 27 7 27
4

n n n n         

 

  

8(v) We want the range of values of n for which 
3 4n m n  . 

3
3 3 3 34  and 4

4

m
n m n n m n m n m        . 

Since n is a positive integer, the above inequality becomes 

3
3

4

m
n m

 
  

 
                                                                                                                                                     

where 

3

4

m 
 
 

 is the least integer greater than or equal to 

3

4

m
. 

 



 
 

8(vi) By (ii), for all 2m  , 

( )
( )

( )
3 3

3 3 2 3
1 11

3 3 3 1 0
4 4 4

m m
m m m m m

+ +
− = − − −    . 

Thus 
( )

3

3
1

4

m
m

 +
  
  

. 

The range of values of n for which Peter’s grid contains ( )
3

1m+  is 

( )
( )

3

31
1

4

m
n m

 +
  + 

  

. 

We want the intersection of 

3
3

4

m
n m

 
  

 
 and  

( )
( )

3

31
1

4

m
n m

 +
  + 

  

. 

Since 
( )

3

3
1

4

m
m

 +
  
  

, the required range of n is 

( )
3

3
1

4

m
n m

 +
  

  

. 

 

 

 

 

Mathematics is clothed in truth because it is fabricated with sound axioms; it is 
adorned with beauty because it is fashioned with  

IDEAS  
 


