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1(i n n n n
® Forall teR, > (at-b)2=0 :(Zaﬁjtz —2£2aibth+Zbi2 >0 Note that
i=1 i=1 i=1 i=1
coefficient of t2, Zn:af >0 since & is non-zero. For the quadratic function to be non-
i=1
negative for all values of t, we have discriminant <0.
n 2 n n
4[2aibij —4(Zai2j[2bi2jgo
i=1 i=1 i=1
n 2 n n
(g <83
i=1 i=1 i=1
1(ii) _ _ _
Given pSHSq = (p—ﬂjso and (q—ﬂjzo.
a, a, a,
Thus
a'i ai
1 b, b)<
?(pai - i)(qai - i) <0
pga’ —(p+q)ah +h’ <0 since a° >0
Taking summation
Kk
= > [pua’—(p+a)ab +b’ <0
i=1
k ) k k )
= qu(ai )_(p+Q)Z(aibi)+Z(bi )<0
i=1 i=1 i=1
(P+@)xab =3 b*+pad a’
i=1 i=1 i=1
1(iii )
(i) Since m<a, <M and m<h <M, thus ESESM
M a n

From (ii), let p=m and q=M so that
M m

=1

>a’+> b’
By AM-GM inequality, % >

Thus(m+MjZn:aibi > Zn:bf +Zn:ai2 > 2 Zn:aizzn:bf :
M m)I i=1 i=1 il =l

Squaring both sides:

%(%+Mj {Zn:aibi} 2Zn:aizzn:bi2 (shown)

m




2(3i)

Y _t(x,y) = f(x.ty)
ax

By letting t = 1 , We have
y

d_y =f [Llj =g [KJ (shown).
dx y y

2(ii) . p H
2xye(?] % = y2 4+ (y? +2x2)e(§] - (j_y: 2xyely 2
X x
’ y2 + (y? +2x2)e(y]
Let f(x,y) = — 208"
y2+(y2+ 2x2)e(§J
f(tX,ty) _ 2(tx)(tY)e y - _ 2xye y _ f(x, y)
(ty)? +[(ty)? + 2(tx)z]e[§) v+ (y? + ZXz)e[;]
(1]2 dx (1)2 _ _ _ _
Hence, 2xye"” ~ y2 +(y2 +2x2)ey/ is a homogeneous differential equation.
y
2(iii) » > —

2uyZe” (u + yj—u) =y +(y? +2u?y?)ev
y
d

2uy36u2 d_u — y2 + yZeu2

y
J‘Zuez du=_[£dy
1+et y

In(L+e*) =In|y|+Inlcl = In|cy|

1
y = A(l+e") where A= J_rE

General solution: y = A|:1+ e&j :l

Tangent at (4,—2) is perpendicular to the line y =mx.
When x=4, y=-2,
d 1 d

@y _ 1 dx_

=—— =-m
dx m dy
Substitute into DE: 2(-8)e*(-m) =4+[4+2(16)]e*
1
m=—(1+9e*).

4e*




3(1)

[r@a=[ron-1(9-f(a)

which on rearranging gives
=f(a)+rf'(t) dt
=f L (0 (x—t)dt
~f(a)+ [ F(O(x-)

which implies Taylor’s theorem holds for the case n=0.

3(i)) | Assume Taylor’s theorem holds for n =k e Z* L {0} . That is,
0= X a0 e
Using integration by parts with u =f*" (t); & =(x-t)";
X 1 e
L 0 () (x=t) et = [ 12 (1) (x|
1 ¥
el T (1) (x—t) ot
1 N
- ) (xa)
1 ¥
el T (1) (x—t) ot
k £
f(x):;fr—(!a)(x—a)r
1(1 a1 . .
+kl{k 10 (a)(x-a) e | 0 (1) (x—t) et
D2l
+%(x—a)m+ﬁff(m)(t)(x—t)k”dt
which establishes the theorem for the case N =k +1 and hence proves Taylor’s
theorem.
3(iii) | Forxclosetoa, Xx—a~0. Then

f(x)=f(a)+ F(a )(x a)+ ( )(x a)’ approximately.

Substitute f(x)=sinx, x=16, a= g into the above equation:

1 2 1 2
sin1.6zsinE+cos£(1.6—£j——sin2(1.6—2) =1——(1.6—Ej .
2 2 2) 2 2 2 2 2




3(iv)

Since 0 < x < X where X is some finite positive integer, for n > 2X,

X X
_<_
n!t nl!
X X X X X X X

2X terms n—-2X terms

<k(5j wherek==2.2.2...

The last inequality holds since 0 <

3(v) Y )
For x=0, I|m—|=I|m0=0.
n—oo n_ nN—o0
For each fixed x e R*, k is finite since X is a finite number.
n-2X% n n
As N —> 0. k(aj >0 and OglimX—SO:limX—I:O.
n—oo n_ nN—o0 n
For each fixed xeR™, let x=-y,yeR".
X" (=) Yy oy
|Imx—zllmu=illmy—=0 by the above result.
n—o n! n—o nl! n—wo nl
We therefore conclude that
vxelR, IimX—:O.
n—o n!
3(vi) £ el
By (v), Forall xeR, IimRn(x):IimAx”*l:f(””)(c)lim X _-o.
n—oo n—oo (n+1)| nam(n_l_l)!

By Taylor’s theorem, e =T, (X)+R, ().
For each x e R, letting n — oo and putting a =0 in particular, gives

X O

e =IimT, (X)+limR, (x)=lim » —="% —.

n—o n—oo n—o ri r!
S r=0 r=0

Remark:

In the above computation, we put in a=0. For any arbitrary a € R, Taylor’s
theorem gives

. : _ -et(x-a)
e :Ilan(x)+LmRn(x)=I|m —

n—w n—w r!
r=0

@D
>
®
Il
MS
—~
x
|
QD
~—

on dividing by e*

|
p_—r r!

replace x—a with x ks X"
= e'= Z—I as before
r!
r=0

So the choice of a is arbitrary.




4(1)

Since p is prime and 1<k -1< p, ged(k -1, p)=1.
There exist a,beZ such that pa+(k-1)b=1.

Forany meZ, p(a—m(k—-1))+(k-1)(b+mp)=1.
Choose m large enough such that y, :=b+mp>0 and x, :=a—-m(k-1).
Hence, there exist x,,y, €Z with y, >0 such that px,+(k—-1)y, =1.

4(1) | since (k-1)|k(k-1)y,, u =k(k-1)y, =0 (mod k -1).

From part (i), px,+(k—-1)y,=1 implies (k-1)y,=1 (mod p), and so,

u =k(k-1)y, =k (mod p).
4(iii) U. U o

Suppose ﬁs_—l (mod p) for some 2<i<j<p.

i-1 j-
Hence, in modulo p, we have the following.
(I-Du =(-1)y;
(i-1)i=(i-1)j by (ii), u, =k(mod p)
ij—i=ij—j
i=j

Since 2<i< j<p, i=] andso foreach 2<k < p, each ku—kl is distinct in modulo p.

4(iv) U

Let v, =1 and for each 2<k < p—1, let v, be the remainder when 1 is divided by

u
p. Note that pilz py, = p (mod p), and so, we define v, = p.

Only v; =1 (mod p). From part (i), forall 2<k < p, (k—1)y, =1 (mod p) and itis clear
that y, #1. Hence, v, =ky, =1 (mod p) forall 2<k<p.

Together with the result in part (ii), we see that all v, ’s, 1<k < p, are unique and form
theset {1, 2, ..., p}.

UyUg...Uy
VV,.. Y = ————
1Y2 k (k _1)|
2x3x%...xk .
=———— (mod by part (i
=k (mod p)
This shows that all vy, vV, V\V,V,, ..., and v;v,..v, leave different remainders when
divided by p.

Alternative to working in grey:
u
Vi :k_ilz Ky, =1+ Yy — pX =1+ Y, (mod p)
Hence v, ;—_r-‘l(mod p) since y, :=b+mp in (i) and b is not a multiple of p

Or




From (i), there exist X, Y, €Z, Y, :=b+mp>0 such that px, +(k—-1)y, =1. Hence
(k—1)y, =1 (mod p).
ky, =1+Yy, (mod p)

=1(mod p) since y, :=b+mp in (i) and b is not a multiple of p

4(v) | A permutationisl,2,7,5,4,10,3,9,8,6,11.
Check that v, Vv, , V|V,Vs, ..., and V,V,...V;; in modulo 11 are unique:
1,2,3,4,56,7,8,9, 10, 11.
v, =1
Up

vV, =
Y2 (2-1)!

EL (modll)

(2-1)!

=2 (mod11)
=V, =
2-7=3(mod11) =V, =7
2-7-5=3-5 (mod11)

=V, =5
=4 (mod11)

4-4=5 (mod11) =V, =4
5.10=6 (mod11) = Vs =10
6-3=7 (mod11) =V, =3
7-9=8 (mod11) =Vy =9
8-8=9 (mod11) =V, =8
9-6=10 (mod11) =V, =6
v, =11




5(1)

Simple sketch of the two graphs to show that R, =R, =R \{0, 1} =D; =D

Hence, fg and gf exist.

g

5(ii)

1-=

X | =

5(Gii)

Since R; =R, =R\{0,1} =D, , hf and hg exist.

h(x)+h($j=x:>h(x)+hf(x)=x
Replace x with f(x) in (1): hf (x)+hg(x)="f(X) ('.'f2 :g)

(2) - (1): hg(x)—h(x)=F(x)-x
Replace x with g(x) in (3)

hf (x)-hg(x)=fg(x)-g(x) (-g"=f)
(3) + (4): hf (x)- ( )=Tg(x)+f(x)-9g(x)-x
(1) - (5): 2h(x)=2x—fg(x)—F(x)+g(x)

oot 1 ., 1

(x+1)(x)(x=1)+x—(x—-1)

2x(x-1)
_ X —x+1
2x(x—-1)

5(iii)

Alternatively, fg(x)=

7

Since Ry =R, =R\ {0, 1} =D, , hfand hg exist.

h(x)+h($j=x = h(x)+hf(x)=x
= hf (x)+hf?(x)

F(x) (@)
x)=9(x) = hg(x)+h(x)=

r:(X) 9(x) -




6(a)(i)

xy =1 (mod z)
There exists me 7 such that xy=mz +1.
Since 1=xy —mz where y,meZ, ged(x,z)=1.

6(a)(ii)

x=1 (mody)and x=1 (mod z)

yl(x-1) and z|(x-1)

Since there are no common factors greater than 1 between y and z, all the prime factors
of y and z are contained in x-1.

Hence, yz|(x—1),i.e. x=1 (mod yz).

6(b)(i) | Since ab=1 (mod c), ac=1 (mod b), and bc=1 (mod a), by part (a)(i), we have
ged(a,b)=ged(a,c)=ged(b,c)=1.
Claim: ab+ac+bc=1 modulo a, b and c.
Proof:
ab=1 (modc)= ab+ac+bc=1+ac+bc (modc)
=1+(a+b)c (modc)
=1 (modc) since (a+b)c=0 (modc)
Similarly, ab+ac+bc=1 modulo a,b.
By part (a)(ii), since a, b and c are pairwise coprime,
ab+ac+bc=1 (mod abc).
Hence, ab+ac +bc =kabc +1 for some k e Z" since 1<a<b<c.
111 1
“+-+—=k+—
c b a abc
1+£+l=k+i>k21.
a b c abc
6bii By the result in part (b)(i),

1<1+1+l<§ since 1<a<bh<c.
a b a

Note that a=2 is the only integer solution greater than 1.

1 1 1 1 1 1 2
Now, 1<=+=+=andso, =<=—+=-<—.
2 b c 2 b c b

Also note that b =3 is the only integer solution greater than a=2.

Now, %<l implies that c=4 or c=5.
c

But since a, b and ¢ are pairwise coprime, c=5.
Hence, (a,b,c)=(2,3,5) is the only solution.




7(a)()

Consider the complementary case when the Primary 1 classroom holds at least 4
tables. First, place 4 tables in the Primary 1 classroom. Distribute the remaining 16

] ] _ (16+5 21
tables into all 6 rooms, and this can be done in ( c j :( . J ways.

. 21 20+5 21
Hence the required answer = Total —( . j :£ . j—[ . j =32781

Alternatively
The solution to the problem is similar to finding the number of integer solutions to

X + X, + X+ X, +X +X, =20 where 0<x <3 and x, >0 foreach i =2,3,4,5,6.
Now 0 < x, <3 implies that 17 <X, + X, + X, + X, + X, < 20.

Since the number of non-negative integer solutions to X, +X, +X, + X, +X, =n is

n+4 ) C(17+4 18+4 19+4 20+4
, the required answer is + + + =32781.
4 4 4 4 4

7(a)(ii)

The solution to the problem is similar to finding the number of integer
solutions to x, +X, + X, + X, + X, + %, =20 where x, >3, x, >3 and x, >0 for
each i=12,34.

Set y,=x.-3,y,=%x-3,y,=x foreach i=1,2,34.

Then the required number of integer solutions to x, + X, + X, + X, + X, + X, = 20

is equal to the number of integer solutions to x +X, + X, + X, + Y, + Y, =14.

. (14+5 19
Hence the answer is 5 = 5 =11628.

7@)(iil)

Let A be the event that the first, second, and third students are in ordered level, A, be
the event that the second, third, and fourth student are in ordered level, A, be the event

that the third, fourth, and fifth students are in ordered level, and A, be the event that

the fourth, fifth and sixth students are in ordered level. By a combination of
complementary counting and PIE, we have that our answer will be

ANANANA|

=[S|-[AUA UAUA]

=[S-2IAl 2 [A NAl- 2 ANA NA[HANA NANA]
|S|=6!=720

24:|A|:£2j><3!x4:480
Y|ANA|=|AAA|+[AANA[HANA]F|A AA[+HA NA|+A A

e

=122




Y ANANA|

i<j<k

=[ANANAI+HANANA[+HANANA|+ANANA)]

6 6
= +1+1+
i
=14
ANANANA=L
|A{mAZ' NA mA;| =720-480+122-14+1=349

7(b) Consider 4 boxes labelled 0, 1, 2 and 3. For each of the 9 integers in the solution set,
place the integer m in box i if m (mod4) =i.
. . 9 . -
By PP, there is at least one box with at least h—l =3 integers in it.
Let the box with 3 integers be box j.
If we label these 3 integers m_, m,, m_as m =4n_+j, m =4n_+ j and
m, =4n, + j for some integers n_, n,, n , then the difference between any of these
pairs is divisible by 4, i.e. m —m, =4(n, —n,), and similarly for the other two
pairs.
7c First, start from Y and recognising each letter has 2 presiding letters considering a

quadrant first). Next remove the four over-counting VICTORY. Number of ways is
4x2°—4=2°-4=252.




8(i)

For n =2, the grid contains the numbers 2,3,4,5,6,7 which has no cube.

8(ii)

NORHMAL FLOAT AUTO REAL RADIAN HMFP n

1
iN

x=2\
Clearly, 3x®—3x*—3x—1>0 forall x>2. Thatis, k =2.

8(iii)

By way of contradiction, since n=1=1% is a cube, we will exclude it and consider
n>2.

Suppose on the contrary, there exists a positive integer n > 2 for which there is no
cube in Peter’s grid.

Let m® be the largest cube strictly less than n. By hypothesis, the next cube (m +1)3
must be strictly more than 4n.

That is, we have m® <n and (m +1)3 >4n.

Firstly, note that if m=1, then (m +1)3 >4n =8> 4n=>n < 2 which contradicts

the assumption that N > 2. Thus m> 2.
Putting the two inequalities above together,

(m+1)3 >4n>4m?
=m®*+3m?+3m+1>4m?
=3m’-3m’-3m-1<0 (*)

But from (ii), 3m*-3m*-3m—-1>0 for all m>2 which contradicts the above
conclusion. Hence Peter’s claim is correct.

8(iv)

(@) N<2°<4n=2<n<8

(b) n333s4n:2747£n327:>7sn327

8(v)

We want the range of values of n for which n<m® <4n.
m3
n<m®*<4n=n<m?’and 4n2m3:>T£n£m3.

3
Since n is a positive integer, the above inequality becomes [——‘ <n<m

3 3
m* | . . m
where {71 is the least integer greater than or equal to T




8(vi) By (ii), forall m>2,

m +1)3

3
m3—(m21) :%(3m3—3m2 —3m—1)>0:> m® > (

4

Thus m® > {Mw .

The range of values of n for which Peter’s grid contains (m +1)3 is

{Mws ns(m+1)3.

4

We want the intersection of

w , the required range of n is

{Mwsngms.

4

Mathematics is clothed in truth because it is fabricated with sound axioms; it is
adorned with beauty because it is fashioned with

IDEAS




