2023 NYJC/TJC/VJC Prelim H3 Math Paper 1

2(i)	$\frac{dy}{dx} = f(x, y) = f(tx, ty)$
	By letting $t = \frac{1}{y}$, we have
	$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{x}{y}, 1\right) = g\left(\frac{x}{y}\right) \text{ (shown).}$
2(ii)	$2xye^{\left(\frac{x}{y}\right)^{2}}\frac{dx}{dy} = y^{2} + (y^{2} + 2x^{2})e^{\left(\frac{x}{y}\right)^{2}} \Leftrightarrow \frac{dy}{dx} = \frac{2xye^{\left(\frac{x}{y}\right)^{2}}}{y^{2} + (y^{2} + 2x^{2})e^{\left(\frac{x}{y}\right)^{2}}}$
	Let $f(x, y) = \frac{2xye^{\left(\frac{x}{y}\right)^2}}{y^2 + (y^2 + 2x^2)e^{\left(\frac{x}{y}\right)^2}}.$
	$f(tx,ty) = \frac{2(tx)(ty)e^{\left(\frac{tx}{ty}\right)^2}}{(ty)^2 + [(ty)^2 + 2(tx)^2]e^{\left(\frac{tx}{ty}\right)^2}} = \frac{2xye^{\left(\frac{x}{y}\right)^2}}{y^2 + (y^2 + 2x^2)e^{\left(\frac{x}{y}\right)^2}} = f(x,y)$
	Hence, $2xye^{\left(\frac{x}{y}\right)^2} \frac{dx}{dy} = y^2 + (y^2 + 2x^2)e^{\left(\frac{x}{y}\right)^2}$ is a homogeneous differential equation.
2(iii)	Let $u = \frac{x}{y} \implies x = yu$, $\frac{dx}{dy} = u + y\frac{du}{dy}$.
	$2uy^{2}e^{u^{2}}\left(u+y\frac{du}{dy}\right) = y^{2} + (y^{2}+2u^{2}y^{2})e^{u^{2}}$
	$2uy^{3}e^{u^{2}}\frac{du}{dy} = y^{2} + y^{2}e^{u^{2}}$
	$\int \frac{2ue^{u^2}}{1+e^{u^2}} \mathrm{d}u = \int \frac{1}{y} \mathrm{d}y$
	$\ln(1 + e^{u^2}) = \ln y + \ln c = \ln cy $
	$y = A(1 + e^{u^2})$ where $A = \pm \frac{1}{c}$
	General solution: $y = A \left[1 + e^{\left(\frac{x}{y}\right)^2} \right].$
	Tangent at $(4, -2)$ is perpendicular to the line $y = mx$.
	When $x = 4$, $y = -2$,
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{m} \implies \frac{\mathrm{d}x}{\mathrm{d}y} = -m$
	Substitute into DE: $2(-8)e^4(-m) = 4 + [4 + 2(16)]e^4$
	$\therefore m = \frac{1}{4\mathrm{e}^4} (1+9\mathrm{e}^4) .$

3(i)	
	$\int_{a}^{x} \mathbf{f}'(t) \mathrm{d}t = \left[\mathbf{f}(t)\right]_{a}^{x} = \mathbf{f}(x) - \mathbf{f}(a)$
	which on rearranging gives
	$f(x) = f(a) + \int_{a}^{x} f'(t) dt$
	$= f(a) + \frac{1}{0!} \int_{a}^{x} f'(t) (x-t)^{0} dt$
	which implies Taylor's theorem holds for the case $n = 0$.
3(ii)	Assume Taylor's theorem holds for $n = k \in \mathbb{Z}^+ \cup \{0\}$. That is,
	$f(x) = \sum_{r=1}^{k} \frac{f^{(r)}(a)}{r!} (x-a)^{r} + \frac{1}{k!} \int_{a}^{x} f^{(k+1)}(t) (x-t)^{k} dt.$
	Using integration by parts with $u = f^{(k+1)}(t)$; $\frac{dv}{dx} = (x-t)^k$:
	$\int_{a}^{x} \mathbf{f}^{(k+1)}(t) (x-t)^{k} dt = -\frac{1}{k+1} \left[\mathbf{f}^{(k+1)}(t) (x-t)^{k+1} \right]_{a}^{x}$
	$+\frac{1}{k+1}\int_{a}^{x}f^{(k+2)}(t)(x-t)^{k+1}dt$
	$= \frac{1}{k+1} f^{(k+1)}(a) (x-a)^{k+1}$
	$+\frac{1}{k+1}\int_{a}^{x}f^{(k+2)}(t)(x-t)^{k+1}dt$
	$f(x) = \sum_{r=1}^{k} \frac{f^{(r)}(a)}{r!} (x-a)^{r}$
	$+\frac{1}{k!}\left\{\frac{1}{k+1}f^{(k+1)}(a)(x-a)^{k+1}+\frac{1}{k+1}\int_{a}^{x}f^{(k+2)}(t)(x-t)^{k+1}dt\right\}$
	$= \sum_{r=1}^{k} \frac{f^{(r)}(a)}{r!} (x-a)^{r}$
	$+\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}+\frac{1}{(k+1)!}\int_{a}^{x}f^{(k+2)}(t)(x-t)^{k+1}dt$
	$=\sum_{r=1}^{k+1} \frac{\mathbf{f}^{(r)}(a)}{r!} (x-a)^r + \frac{1}{(k+1)!} \int_a^x \mathbf{f}^{(k+2)}(t) (x-t)^{k+1} dt$
	which establishes the theorem for the case $n = k + 1$ and hence proves Taylor's theorem.
3(iii)	For x close to a, $x - a \approx 0$. Then f'(a) = f''(a)
	$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 \text{ approximately.}$
	Substitute $f(x) = \sin x$, $x = 1.6$, $a = \frac{\pi}{2}$ into the above equation:
	$\sin 1.6 \approx \sin \frac{\pi}{2} + \cos \frac{\pi}{2} \left(1.6 - \frac{\pi}{2} \right) - \frac{1}{2} \sin \frac{\pi}{2} \left(1.6 - \frac{\pi}{2} \right)^2 = 1 - \frac{1}{2} \left(1.6 - \frac{\pi}{2} \right)^2.$
l	

Since $0 < x < \hat{x}$ where \hat{x} is some finite positive integer, for $n > 2\hat{x}$, 3(iv) $\frac{x^n}{n!} < \frac{\hat{x}^n}{n!}$ $=\frac{\hat{x}\cdot\hat{x}\cdot\hat{x}\cdot\hat{x}\cdots\hat{x}}{\underbrace{1\ 2\ 3\ 2},\underbrace{2\hat{x}\cdot\hat{x}}{2\hat{x}\cdot\hat{x}}\cdot\frac{\hat{x}\cdot\hat{x}\cdot\hat{x}\cdot\hat{x}}{2\hat{x}+1}\cdot\frac{\hat{x}\cdot\hat{x}\cdot\hat{x}}{2\hat{x}+2}\cdots\hat{n}$ $< k \left(\frac{1}{2}\right)^{n-2\hat{x}}$ where $k = \frac{\hat{x}}{1} \cdot \frac{\hat{x}}{2} \cdot \frac{\hat{x}}{3} \cdots \frac{\hat{x}}{2\hat{x}}$ The last inequality holds since $0 < \frac{\hat{x}}{2\hat{x}+1}, \frac{\hat{x}}{2\hat{x}+2}, \cdots, \frac{\hat{x}}{n} < \frac{1}{2}$. **3(v)** For x = 0, $\lim_{n \to \infty} \frac{x^n}{n!} = \lim_{n \to \infty} 0 = 0$. For each fixed $x \in \mathbb{R}^+$, k is finite since \hat{x} is a finite number. As $n \to \infty$, $k \left(\frac{1}{2}\right)^{n-2\hat{x}} \to 0$ and $0 \le \lim_{n \to \infty} \frac{x^n}{n!} \le 0 \Longrightarrow \lim_{n \to \infty} \frac{x^n}{n!} = 0$. For each fixed $x \in \mathbb{R}^-$, let $x = -y, y \in \mathbb{R}^+$. $\lim_{n \to \infty} \frac{x^n}{n!} = \lim_{n \to \infty} \frac{(-1)^n y^n}{n!} = \pm \lim_{n \to \infty} \frac{y^n}{n!} = 0$ by the above result. We therefore conclude that $\forall x \in \mathbb{R}, \lim_{n \to \infty} \frac{x^n}{n!} = 0.$ By (v), For all $x \in \mathbb{R}$, $\lim_{n \to \infty} \mathbb{R}_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} = f^{(n+1)}(c) \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = 0$. 3(vi) By Taylor's theorem, $e^x = T_n(x) + R_n(x)$. For each $x \in \mathbb{R}$, letting $n \to \infty$ and putting a = 0 in particular, gives $\mathbf{e}^{x} = \lim_{n \to \infty} \mathbf{T}_{n}\left(x\right) + \underbrace{\lim_{n \to \infty} \mathbf{R}_{n}\left(x\right)}_{n} = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{x^{r}}{r!} = \sum_{r=0}^{\infty} \frac{x^{r}}{r!}.$ **Remark:** In the above computation, we put in a = 0. For any arbitrary $a \in \mathbb{R}$, Taylor's theorem gives $e^{x} = \lim_{n \to \infty} T_{n}(x) + \lim_{n \to \infty} R_{n}(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{e^{a}(x-a)^{r}}{r!}$ $\Rightarrow e^{x-a} = \sum_{r=0}^{\infty} \frac{(x-a)^r}{r!} \text{ on dividing by } e^a$ $\stackrel{\text{replace } x-a \text{ with } x}{\Rightarrow} e^x = \sum_{r=1}^{\infty} \frac{x^r}{r!} \text{ as before}$ So the choice of *a* is arbitrary.

4(i)	Since p is prime and $1 \le k - 1 < p$, $gcd(k - 1, p) = 1$.	
-(-)		
	There exist $a, b \in \mathbb{Z}$ such that $pa + (k-1)b = 1$.	
	For any $m \in \mathbb{Z}$, $p(a-m(k-1))+(k-1)(b+mp)=1$.	
	Choose <i>m</i> large enough such that $y_k := b + mp > 0$ and $x_k := a - m(k-1)$.	
	Hence, there exist $x_k, y_k \in \mathbb{Z}$ with $y_k > 0$ such that $px_k + (k-1)y_k = 1$.	
4(ii)	Since $(k-1) k(k-1)y_k$, $u_k = k(k-1)y_k \equiv 0 \pmod{k-1}$.	
	From part (i), $px_k + (k-1)y_k = 1$ implies $(k-1)y_k \equiv 1 \pmod{p}$, and so,	
	$u_k = k(k-1)y_k \equiv k \pmod{p}.$	
4(***)		
4(iii)	Suppose $\frac{u_i}{i-1} \equiv \frac{u_j}{j-1} \pmod{p}$ for some $2 \le i \le j \le p$.	
	Hence, in modulo <i>p</i> , we have the following.	
	$(j-1)u_i \equiv (i-1)u_j$	
	$(j-1)i \equiv (i-1)j$ by (ii), $u_k \equiv k \pmod{p}$	
	$ij - i \equiv ij - j$	
	$i \equiv j$	
	Since $2 \le i \le j \le p$, $i = j$ and so for each $2 \le k \le p$, each $\frac{u_k}{k-1}$ is distinct in modulo p .	
	k-1	
4(iv)	Let $v_1 = 1$ and for each $2 \le k \le p - 1$, let v_k be the remainder when $\frac{u_k}{k-1}$ is divided by	
	$\sum_{k=1}^{k} \sum_{j=1}^{k} \sum_{k=1}^{k} \sum_{j=1}^{k} \sum_{j$	
	p. Note that $\frac{u_p}{p-1} = py_p \equiv p \pmod{p}$, and so, we define $v_p = p$.	
	p-1	
	Only $v_1 \equiv 1 \pmod{p}$. From part (i), for all $2 \le k \le p$, $(k-1)y_k \equiv 1 \pmod{p}$ and it is clear	
	that $y_k \neq 1$. Hence, $v_k = ky_k \not\equiv 1 \pmod{p}$ for all $2 \le k \le p$.	
	Together with the result in part (ii), we see that all v_k 's, $1 \le k \le p$, are unique and form	
	the set $\{1, 2,, p\}$.	
	$v_1 v_2 \dots v_k = \frac{u_2 u_3 \dots u_k}{(k-1)!}$	
	$\equiv \frac{2 \times 3 \times \dots \times k}{(k-1)!} \pmod{p} (\text{by part (i)})$	
	$=k \pmod{p}$	
	This shows that all v_1 , v_1v_2 , $v_1v_2v_3$,, and $v_1v_2v_p$ leave different remainders when	
	divided by <i>p</i> .	
	Alternative to working in grey:	
	$v_k = \frac{u_k}{k-1} = ky_k = 1 + y_k - px_k \equiv 1 + y_k \pmod{p}$	
	Hence $v_k \not\equiv 1 \pmod{p}$ since $y_k \coloneqq b + mp$ in (i) and b is not a multiple of p	
	Or	
L	•	

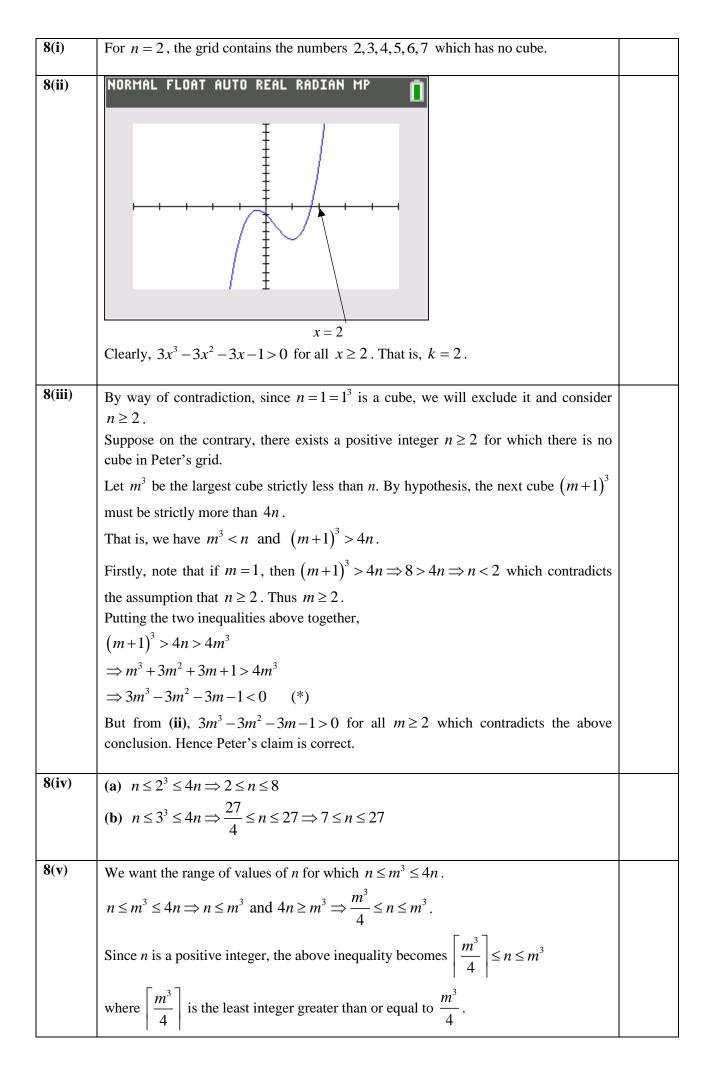
	From (i), there exist $x_k, y_k \in \mathbb{Z}$, $y_k := b + mp > 0$ such that $px_k + (k-1)y_k = 1$.	Hence
	$(k-1)y_k \equiv 1 \pmod{p}.$	
	$ky_k \equiv 1 + y_k \pmod{p}$	
	$\neq 1 \pmod{p}$ since $y_k \coloneqq b + mp$ in (i) and b is not a multiple of p	
4(v)	A permutation is 1, 2, 7, 5, 4, 10, 3, 9, 8, 6, 11.	
	Check that v_1 , v_1v_2 , $v_1v_2v_3$,, and $v_1v_2v_{11}$ in modulo 11 are unique: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.	
	$v_1 = 1$	
	$v_1 v_2 = \frac{u_2}{(2-1)!}$	
	$\equiv \frac{2}{(2-1)!} \qquad (\bmod 11)$	
	$= 2 \qquad (mod11)$	
	$\Rightarrow v_2 = 2$	
	$2 \cdot 7 \equiv 3 \pmod{11} \qquad \Longrightarrow v_3 = 7$	
	$2 \cdot 7 \cdot 5 \equiv 3 \cdot 5 \pmod{11}$ $\equiv 4 \pmod{11} \qquad \Rightarrow v_4 = 5$	
	$4 \cdot 4 \equiv 5 \pmod{11} \qquad \Longrightarrow v_5 = 4$	
	$5 \cdot 10 \equiv 6 \pmod{11} \implies v_6 = 10$	
	$6 \cdot 3 \equiv 7 \pmod{11} \qquad \Longrightarrow v_7 = 3$	
	$7 \cdot 9 \equiv 8 \pmod{11} \implies v_8 = 9$	
	$8 \cdot 8 \equiv 9 \pmod{11} \qquad \Longrightarrow v_9 = 8$	
	$9 \cdot 6 \equiv 10 \pmod{11} \qquad \Longrightarrow v_{10} = 6$	
	$v_{11} = 11$	

5(i)	Simple sketch of the two graphs to show that $\mathbf{R}_{f} = \mathbf{R}_{g} = \mathbb{R} \setminus \{0, 1\}$	$= D_f = D_g$.	
	Hence, fg and gf exist.	1 5	
5(ii)	$f^{2}(x) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1 - x}{1 - x - 1} = \frac{x - 1}{x} = 1 - \frac{1}{x} = g(x)$ $g^{2}(x) = 1 - \frac{1}{1 - \frac{1}{1 - x}} = 1 - \frac{x}{x - 1} = \frac{x - 1 - x}{x - 1} = \frac{1}{1 - x} = f(x).$		
5(iii)	Since $\mathbf{R}_{f} = \mathbf{R}_{g} = \mathbb{R} \setminus \{0, 1\} = \mathbf{D}_{h}$, hf and hg exist.		
	$h(x) + h\left(\frac{1}{1-x}\right) = x \Longrightarrow h(x) + hf(x) = x$	(1)	
		(1)	
	Replace x with $f(x)$ in (1): $hf(x) + hg(x) = f(x)$ (:: $f^2 = g$)	(2)	
	(2) - (1): $hg(x) - h(x) = f(x) - x$	(3)	
	Replace x with $g(x)$ in (3): hf $(x) - hg(x) = fg(x) - g(x)$ $(\because g^2 = f)$	(4)	
	(3) + (4): hf(x) - h(x) = fg(x) + f(x) - g(x) - x	(5)	
	(1) - (5): $2h(x) = 2x - fg(x) - f(x) + g(x)$		
	$h(x) = \frac{1}{2} \left[2x - \frac{1}{1 - \left(1 - \frac{1}{x}\right)} - \frac{1}{1 - x} + 1 - \frac{1}{x} \right]$ $= \frac{1}{2} \left(x + 1 + \frac{1}{x - 1} - \frac{1}{x} \right)$ $= \frac{(x + 1)(x)(x - 1) + x - (x - 1)}{2x(x - 1)}$ $= \frac{x^3 - x + 1}{2x(x - 1)}$		
5(iii)	Alternatively, $fg(x) = \frac{1}{1 - \left(1 - \frac{1}{x}\right)} = x$ Since $R_f = R_g = \mathbb{R} \setminus \{0, 1\} = D_h$, hf and hg exist.		
	$h(x) + h\left(\frac{1}{1-x}\right) = x \implies h(x) + hf(x) = x$		
	$\Rightarrow hf(x) + hf^{2}(x) = f(x) - (1)$		
	and $hg(x) + hfg(x) = g(x) \implies hg(x) + h(x) = g(x) (2)$		
	h(x) = x - hf(x)		
	$= x - \left[f(x) - hf^{2}(x) \right] by (1)$		
	= x - f(x) + hg(x)		
	$= x - f(x) + \left[g(x) - h(x)\right] by (2)$		
	2h(x) = x - f(x) + g(x)		
	$h(x) = \frac{1}{2} \left[x - \frac{1}{1-x} + 1 - \frac{1}{x} \right]$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

6(a)(i)	$ry = 1 \pmod{2}$	
0(a)(1)	$xy \equiv 1 \pmod{z}$ There exists $m \in \mathbb{Z}$ such that $xy = mz + 1$.	
	Since $1 = xy - mz$ where $y, m \in \mathbb{Z}$, $gcd(x, z) = 1$.	
6(a)(ii)	$x \equiv 1 \pmod{y}$ and $x \equiv 1 \pmod{z}$	
	y (x-1) and $z (x-1)$	
	Since there are no common factors greater than 1 between y and z, all the prime factors	
	of y and z are contained in $x-1$.	
	Hence, $y_z (x-1)$, i.e. $x \equiv 1 \pmod{y_z}$.	
6(b)(i)	Since $ab \equiv 1 \pmod{c}$, $ac \equiv 1 \pmod{b}$, and $bc \equiv 1 \pmod{a}$, by part (a)(i), we have	
	gcd(a,b) = gcd(a,c) = gcd(b,c) = 1.	
	Claim: $ab + ac + bc \equiv 1 \mod a$, b and c. Proof:	
	$ab \equiv 1 \pmod{c} \Rightarrow ab + ac + bc \equiv 1 + ac + bc \pmod{c}$	
	$\equiv 1 + (a+b)c \pmod{c}$	
	$\equiv 1 \pmod{c} \text{since } (a+b)c \equiv 0 \pmod{c}$	
	Similarly, $ab + ac + bc \equiv 1 \mod a, b$.	
	By part (a)(ii), since a, b and c are pairwise coprime,	
	$ab + ac + bc \equiv 1 \pmod{abc}$.	
	Hence, $ab + ac + bc = kabc + 1$ for some $k \in \mathbb{Z}^+$ since $1 < a < b < c$.	
	$\frac{1}{c} + \frac{1}{b} + \frac{1}{a} = k + \frac{1}{abc}$	
	$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = k + \frac{1}{abc} > k \ge 1.$	
	Deaths are set (b)(2)	
6bii	By the result in part (b)(i), 1 1 1 3	
	$1 < \frac{1}{a} + \frac{1}{b} + \frac{1}{c} < \frac{3}{a}$ since $1 < a < b < c$.	
	Note that $a = 2$ is the only integer solution greater than 1.	
	Now, $1 < \frac{1}{2} + \frac{1}{b} + \frac{1}{c}$ and so, $\frac{1}{2} < \frac{1}{b} + \frac{1}{c} < \frac{2}{b}$.	
	Also note that $b = 3$ is the only integer solution greater than $a = 2$.	
	Now, $\frac{1}{6} < \frac{1}{c}$ implies that $c = 4$ or $c = 5$.	
	But since <i>a</i> , <i>b</i> and <i>c</i> are pairwise coprime, $c = 5$. Hence, $(a,b,c)=(2,3,5)$ is the only solution.	
	Thence, $(u, b, c) = (2, 3, 5)$ is the only solution.	
<u> </u>		

7(a)(i)	Consider the complementary case when the Primary 1 classroom holds at least 4 tables. First, place 4 tables in the Primary 1 classroom. Distribute the remaining 16	
	tables into all 6 rooms, and this can be done in $\binom{16+5}{5} = \binom{21}{5}$ ways.	
	Hence the required answer = Total $-\binom{21}{5} = \binom{20+5}{5} - \binom{21}{5} = 32781$	
	<u>Alternatively</u> The solution to the problem is similar to finding the number of integer solutions to	
	$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 20$ where $0 \le x_1 \le 3$ and $x_i \ge 0$ for each $i = 2, 3, 4, 5, 6$.	
	Now $0 \le x_1 \le 3$ implies that $17 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 20$.	
	Since the number of non-negative integer solutions to $x_2 + x_3 + x_4 + x_5 + x_6 = n$ is	
	$\binom{n+4}{4}$, the required answer is $\binom{17+4}{4} + \binom{18+4}{4} + \binom{19+4}{4} + \binom{20+4}{4} = 32781$.	
7(a)(ii)	The solution to the problem is similar to finding the number of integer	
	solutions to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 20$ where $x_5 \ge 3$, $x_6 \ge 3$ and $x_i \ge 0$ for	
	each $i = 1, 2, 3, 4$.	
	Set $y_5 = x_5 - 3$, $y_6 = x_6 - 3$, $y_i = x_i$ for each $i = 1, 2, 3, 4$.	
	Then the required number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 20$	
	is equal to the number of integer solutions to $x_1 + x_2 + x_3 + x_4 + y_5 + y_6 = 14$.	
	Hence the answer is $\binom{14+5}{5} = \binom{19}{5} = 11628$.	
7(a)(iii)	Let A he the event that the first second and third students are in ordered level A he	
/(u)(III)	Let A_1 be the event that the first, second, and third students are in ordered level, A_2 be the event that the second, third, and fourth student are in ordered level, A_3 be the event	
	that the third, fourth, and fifth students are in ordered level, and A_4 be the event that	
	the fourth, fifth and sixth students are in ordered level. By a combination of complementary counting and PIE, we have that our answer will be	
	$\left A_{1}^{\prime}\cap A_{2}^{\prime}\cap A_{3}^{\prime}\cap A_{4}^{\prime} ight $	
	$= S - A_1 \cup A_2 \cup A_3 \cup A_n $	
	$= S - \sum_{i=1}^{4} A_i + \sum_{i \le i} A_i \cap A_j - \sum_{i \le i \le k} A_i \cap A_j \cap A_k + A_1 \cap A_2 \cap A_3 \cap A_4 $	
	S = 6! = 720	
	$\sum_{i=1}^{4} A_i = \binom{6}{3} \times 3! \times 4 = 480$	
	$\sum_{i < j} A_i \cap A_j = A_1 \cap A_2 + A_1 \cap A_3 + A_1 \cap A_4 + A_2 \cap A_3 + A_2 \cap A_4 + A_3 \cap A_4 $	
	$= \binom{6}{4} \times 2! + \binom{6}{5} + \binom{6}{3} + \binom{6}{4} \times 2! + \binom{6}{5} + \binom{6}{4} \times 2!$ = 122	

	$\sum_{i < j < k} \left A_i \cap A_j \cap A_k ight $	
	$= A_1 \cap A_2 \cap A_3 + A_1 \cap A_2 \cap A_4 + A_1 \cap A_3 \cap A_4 + A_2 \cap A_3 \cap A_4 $	
	$= \begin{pmatrix} 6\\5 \end{pmatrix} + 1 + 1 + \begin{pmatrix} 6\\5 \end{pmatrix}$	
	$ A_1 \cap A_2 \cap A_3 \cap A_4 = 1$	
	$ A_1' \cap A_2' \cap A_3' \cap A_4' = 720 - 480 + 122 - 14 + 1 = 349$	
7(b)	Consider 4 boxes labelled 0, 1, 2 and 3. For each of the 9 integers in the solution set,	
	place the integer m in box i if $m \pmod{4} = i$.	
	By PP, there is at least one box with at least $\left\lceil \frac{9}{4} \right\rceil = 3$ integers in it.	
	Let the box with 3 integers be box <i>j</i> .	
	If we label these 3 integers m_p , m_q , m_r as $m_p = 4n_p + j$, $m_q = 4n_q + j$ and	
	$m_r = 4n_r + j$ for some integers n_p , n_q , n_r , then the difference between any of these	
	pairs is divisible by 4, i.e. $m_p - m_q = 4(n_p - n_q)$, and similarly for the other two	
	pairs.	
7c	First, start from Y and recognising each letter has 2 presiding letters considering a	
	quadrant first). Next remove the four over-counting VICTORY. Number of ways is	
	$4 \times 2^6 - 4 = 2^8 - 4 = 252 .$	



8(vi) By (ii), for all
$$m \ge 2$$
,
 $m^3 - \frac{(m+1)^3}{4} = \frac{1}{4} (3m^3 - 3m^2 - 3m - 1) > 0 \Rightarrow m^3 > \frac{(m+1)^3}{4}$.
Thus $m^3 \ge \left\lceil \frac{(m+1)^3}{4} \right\rceil$.
The range of values of *n* for which Peter's grid contains $(m+1)^3$ is
 $\left\lceil \frac{(m+1)^3}{4} \right\rceil \le n \le (m+1)^3$.
We want the intersection of
 $\left\lceil \frac{m^3}{4} \right\rceil \le n \le m^3$ and $\left\lceil \frac{(m+1)^3}{4} \right\rceil \le n \le (m+1)^3$.
Since $m^3 \ge \left\lceil \frac{(m+1)^3}{4} \right\rceil$, the required range of *n* is
 $\left\lceil \frac{(m+1)^3}{4} \right\rceil \le n \le m^3$.

Mathematics is clothed in truth because it is fabricated with sound axioms; it is adorned with beauty because it is fashioned with

IDEAS