

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATIONS

HIGHER 2

CANDIDATE								
NAME								
ſ								
CLASS	2	3	S					

CHEMISTRY

Paper 3 Free Response

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work that you hand in.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the **spaces provided** on the Question Paper.

If additional space is required, you should use the pages at the end of this booklet.

The question number must be clearly shown.

Section A Answer **all** questions.

Section B Answer one question.

A Data Booklet is provided.

The use of an approved scientific calculator is expected, where appropriate.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of <u>32</u> printed pages (including this cover page).

For Examiner's Use				
Q1		8		
Q2		21		
Q3		20		
Q4		11		
Q5 or Q6		20		
Total		80		

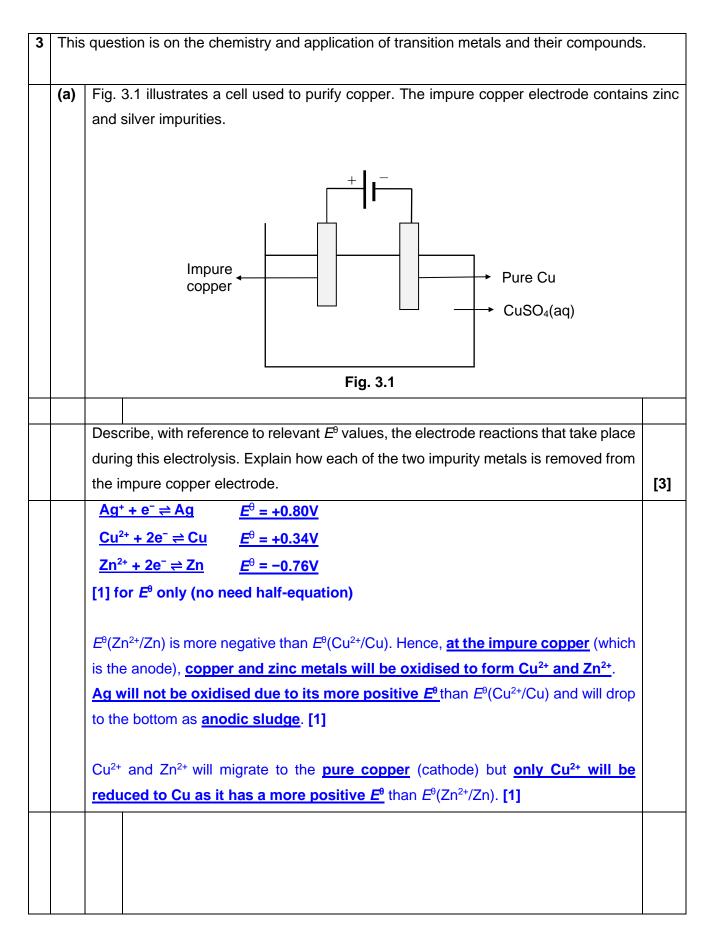
2 hours

9729/03

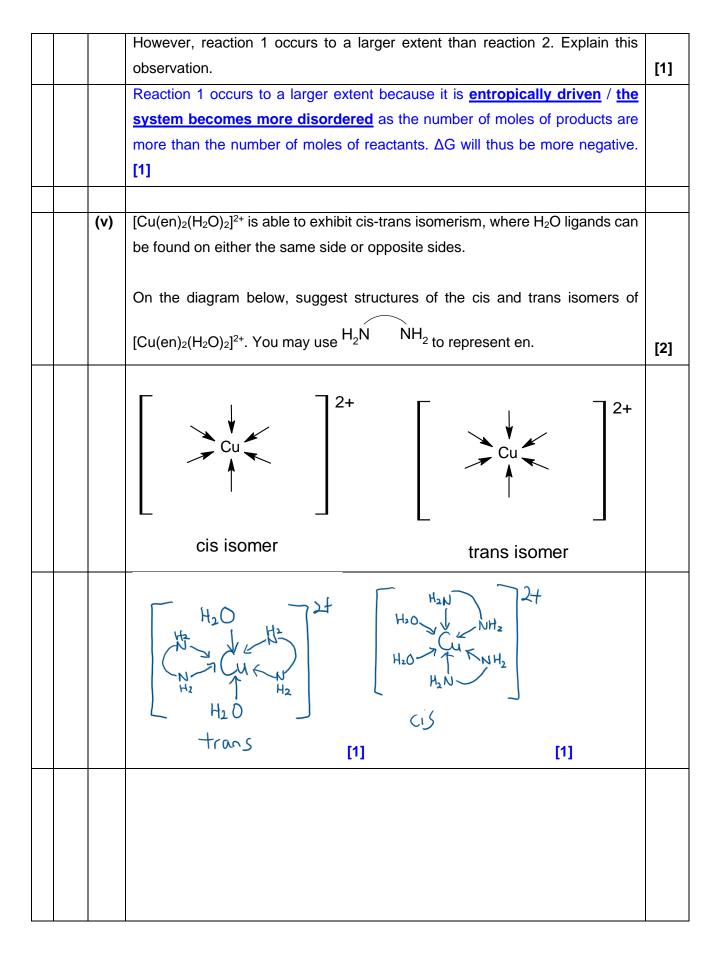
9 September 2024

			Section A					
			Answer all the questions in this	s section.				
1	(a)	(i)	Define the term <i>relative atomic mass</i> .	[1]				
			Relative atomic mass of an element is the <u>a</u>	verage mass of 1 atom of the				
			element relative to 1/12 th the mass of 1 ato	<u>m of ¹²C</u> . [1]				
			OR					
			average mass of one atom of an element $\frac{1}{12}$ the mass of one atom of carbon-12 [1]					
			$\frac{1}{12}$ the mass of one atom of carbon-12					
			OR					
			It refers to mass of one mole of atoms relative	ve/compared to 1/12 (the mass)				
			of 1 mole of ¹² C or in which 1 mole ¹² C (atom) has a mass of (exactly) 12g.				
		(ii)	Diamond, which is made up of both ¹² C and ¹³ C atoms, has a relative atomic					
			mass of 12.011. With reference to Table 1.1, calculate the percentage abundance of 13 C in diamond.					
			Table 1.1					
			Relative					
			ma					
			¹² C 12.0					
			¹³ C 13.0	03 [1]				
			Let the percentage abundance of ¹³ C be y%.					
			$\frac{(13.003)(y) + (12.000)(10)}{(100)(10)}$	^{0-y)} =12.011				
			100					
			y = 1.096 ≈ 1.10 [1]					
	(b)	(i)	Define the term enthalpy change of atomisation	on of C _(graphite) . [1]				
			It refers to the <u>enthalpy change/energy required</u> to <u>form one mole of</u> <u>gaseous C atoms from C_(graphite)</u> [1]					
		(ii)	Some enthalpy change values are shown in Table 1.2.					
			Table 1.2					
				value / kJ mol ⁻¹				
			enthalpy change of atomisation of C _{(diamo}					

	enthalpy change of combustion of $C_{(diamond)}$	-395	
	enthalpy change of combustion of $C_{(graphite)}$	-393	
	Using the data in Table 1.2, construct a suitable ene	rgy cycle to show that the	
	enthalpy change of atomisation of $C_{(graphite)}$ is +719 k.	J mol ⁻¹ .	[3]
	$C(g) + O_{2}(g)$ $7 + 717$ $C(diamond) + O_{2}(g)$ -395 $C(green - 5)$ $CO_{2}(y)$ [2] $\Delta H_{atom} = -393 + 395 + 717 = +719 \text{ kJ mol}^{-1} [1]$	Hatom C(graphite) ophite) + O2(g) 393	
	-		
(iii)	Even though graphite and diamond are allotropes of o	carbon, they have different	
	enthalpy change of atomisation.		
	With reference to hybridisation of the carbon atoms,	•	<mark>[</mark> 2]
	Carbon atoms in graphite are sp ² hybridised wh	nile the carbon atoms in	
	diamond are sp³ hybridised . As sp³ hybrid orbita	Is have less s character	
	than sp ² hybrid orbitals, C-C in diamond will experien	nce less effective orbital	
	overlap, leading to weaker bond which requires I	ess energy to overcome.	
	Hence, the enthalpy change of atomisation of $C_{(diamor}$	nd) is less endothermic.	
		[Tot	al: 8]

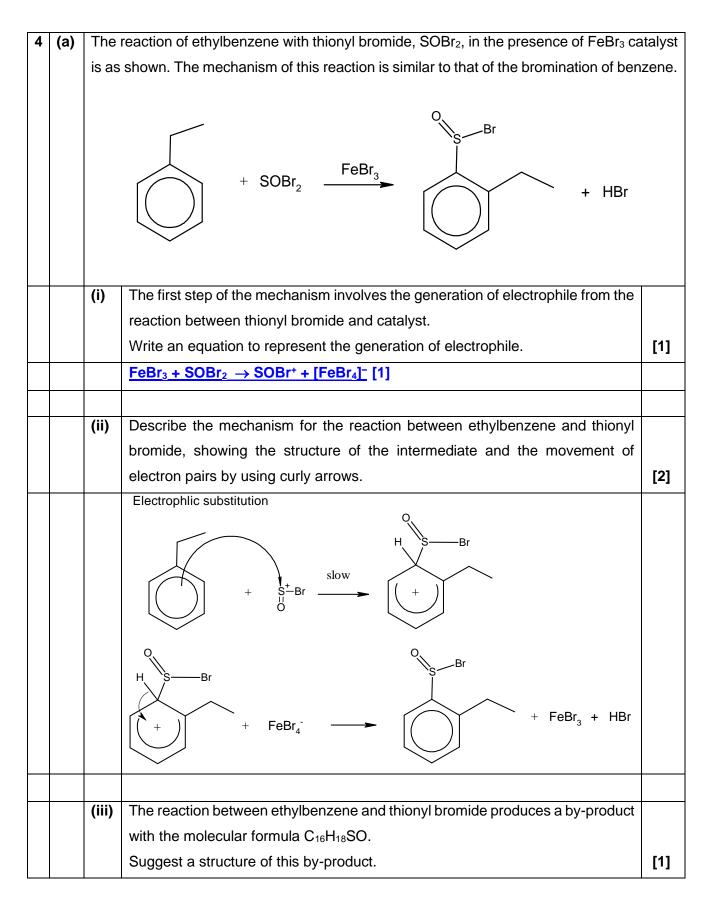

(a)	(i)	The melting point of beryllium and magnesium are shown in Table 2.1.	
		Table 2.1	
		melting point / °C	
		beryllium 1287	
		magnesium 650	
		Explain, in terms of structure and bonding, the difference in melting point between beryllium and magnesium.	[2
		Both Be and Mg are giant metallic lattices with strong electrostatic forces	-1-
		of attraction between the respective cations and sea of delocalised	
		electrons / metallic bonds.	
		Be ²⁺ has a smaller cationic radius / higher charge density than Mg ²⁺ and	
		therefore, the metallic bond in Be is stronger and will require more energy to	
		overcome. As such, Be has a higher melting point.	
	(ii)	Explain why beryllium is a weaker reducing agent than magnesium in terms of	
			[2
		Down the group from Be to Mg, the number of protons increases and hence,	
		nuclear charge increases. As the number of filled electron shells / inner	
		shells increase, the valence electrons are further away from nucleus and	
		experience stronger shielding effect. Therefore, the valence electrons	
		experience weaker nuclear attraction and require less energy to be removed.	
	(iii)	Explain why the radius of beryllium ion is smaller than the radius of beryllium atom.	[2
		Both Be and Be ²⁺ have the same number of protons and therefore, same	
		nuclear charge. Be ²⁺ has 1 less shell of electrons than Be. Therefore, the	
1		valence electrons of Be2+ will experience lower shielding effect and	
		stronger nuclear attraction.	

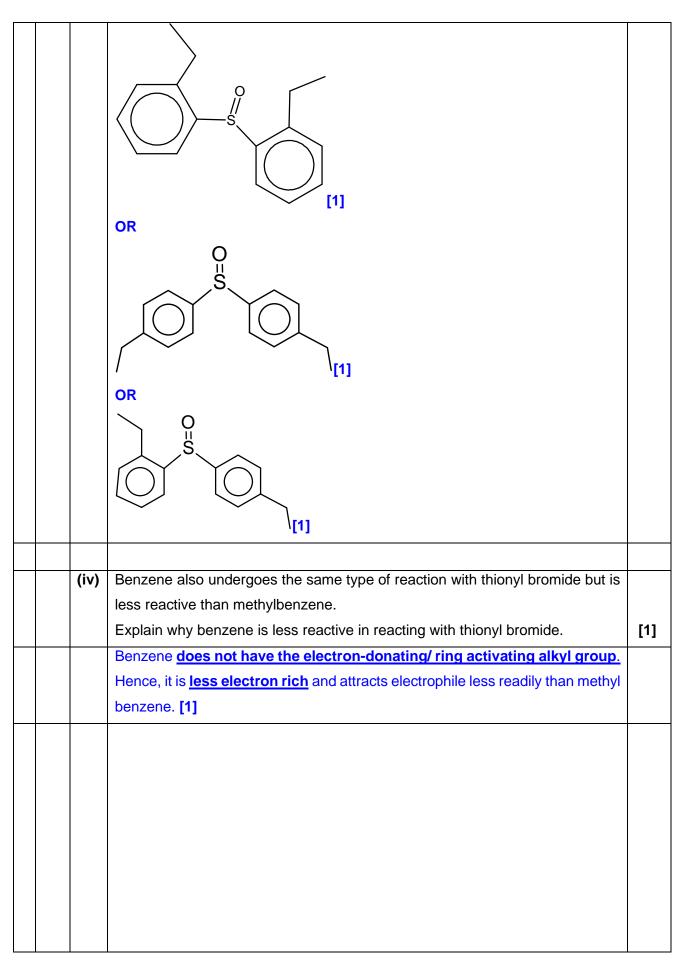
	(iv)	Unlike other Group 2 carbonates, beryllium carbonate is unstable as it will quickly decompose to form beryllium oxide and carbon dioxide.	
		On Fig. 2.1, draw the mechanism for the decomposition of beryllium carbonate. Show the relevant lone pair and movement of electron pairs by using curly arrows on the carbonate ion.	
		$Be^{2+} \qquad \bigcup_{\substack{ \\ -O \qquad O^-}}^{O} \qquad \longrightarrow Be^{2+} O^{2-} + CO_2$	
		Fig 2.1	[1]
		$Be^{2+} \qquad \bigcirc U \\ \bigcirc C \\ (C \\) \\ (C $	
(b)	-	llium can be extracted from ores. An ore containing beryllium is first heated to a high temperature to form beryllium fluoride, BeF ₂ , before it is dissolved in water.	
	-	I pellets are then added to 1 mol dm ⁻³ of aqueous BeF_2 to precipitate $Be(OH)_2$.	
		pH of the resultant solution is 12.4.	
	Be(C	DH) ₂ is sparingly soluble in water. The K_{sp} of Be(OH) ₂ is 2.55 x 10 ⁻⁴ at 25 °C.	
	(i)	Write an expression for the K_{sp} of Be(OH) ₂ , stating its units.	[1]
		$\frac{K_{sp} = [Be^{2+}][OH^{-}]^2 \ mol^3 \ dm^{-9}}{[1]}$	
	(ii)	Calculate the percentage of Be ²⁺ that has been precipitated.	[2]
	()	pOH = 14 - 12.4 = 1.6	
		$[OH^{-}] = 10^{-1.6}$	
		$2.55 \times 10^{-4} = [Be^{2+}][0.025118]^2$	
		[Be ²⁺] = <u>0.40415 mol dm⁻³</u>	
		% precipitated = (1 - 0.40415) / 1 x 100% = <u>59.6%</u>	
	(iii)	HCl(aq) and NaOH(aq) are added to separate saturated solutions containing	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$Be(OH)_2$, which is a white solid. The observations are recorded in Table 2.2.	

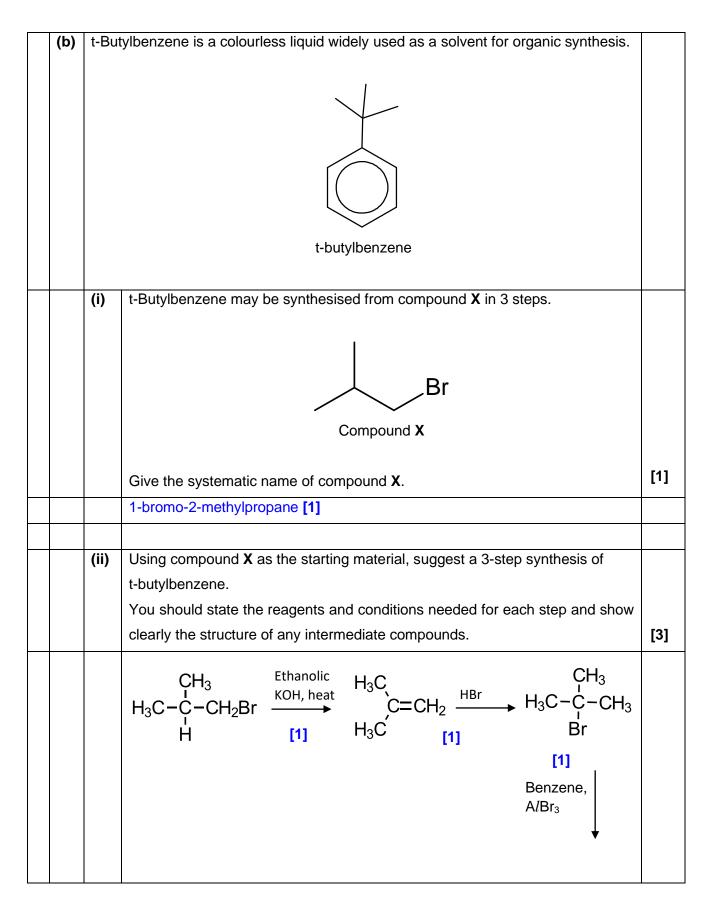

		Table 2.2	
	procedures	observations	
	HCl(aq) is added to Be(OH) ₂ .	White solid dissolves to form colourless	
		solution.	
	NaOH(aq) is added to Be(OH) ₂ .	White solid dissolves to form colourless	
		solution.	
	Explain how the solubility of Be((DH) ₂ is affected by the addition of HC l and	
	NaOH.		[2]
	<u>Be(OH)₂</u> ⇒ Be ²⁺ + 2OH ⁻		
	When HC <i>l</i> (aq) is added, [OH-] de	ecreases due to neutralisation and by Le	
	Chatelier's Principle, position of	equilibrium shifts right to produce more	
	OH ⁻ , resulting in Be(OH)₂ to dissol	ve.	
	OR		
	Be(OH) ₂ reacts with HC <i>l</i> via <u>neutrant</u>	alisation to form a <u>soluble salt BeCl</u> ₂.	
	When NaOH(ag) is added, the wh	nite solids dissolve due to the formation of	
	complex ion [Be(OH) ₄] ²⁻ .		
(iv)	In the gaseous state, BeF ₂ has the	same number of σ and π bonds as CO ₂ .	
	Draw the structure of BeF_2 in the g	aseous state.	[1]
	F≥Be≤F _[1]		

(c)	25.0	cm ³ of 0.100 mol dm ^{-3} of benzoic acid, C ₆ H ₅ COOH, was titrated with	
	0.100) mol dm ⁻³ of KOH. The change in pH was monitored and shown in the graph	
	belov	ν.	
		pH	
		2.59	
		0	
		Volume of KOH / cm ³	
	(i)	Show that K_a of benzoic acid is 6.61 x 10 ⁻⁵ mol dm ⁻³ .	[1]
		$[H^+] = 10^{-2.59} = 2.5704 \times 10^{-3} \text{ mol dm}^{-3}$	
		$K_{\rm a} = \frac{(2.5704 \times 10^{-3})^2}{0.1} = 6.61 \times 10^{-5} \text{ mol dm}^{-3}$	
	(ii)	Calculate the pH of the solution when 12.5 cm ³ of KOH was added.	[1]
		When 12.5 cm ³ of KOH was added, [C ₆ H ₅ COOH] and [C ₆ H ₅ COO ⁻] were the	
		same. In other words, there is maximum buffering capacity.	
		pH = p K_a = -lg(6.61 x 10 ⁻⁵) = <u>4.18</u> (to 3 sf) [1]	
	(iii)	Calculate the pH at equivalence point.	[3]
		Amount of sodium benzoate formed at equivalence point	
		$= 0.025 \times 0.1 = 0.0025 \text{ mol}$	
		$[sodium benzoate] = 0.0025 / 0.05 = 0.05 mol dm^{-3}$	
		$C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^-$	
		$K_{\rm b} = K_{\rm W}/K_{\rm a} = 10^{-14} / (6.61 \times 10^{-5}) = 1.5129 \times 10^{-10} \text{ mol dm}^{-3}$	
		$1.5129 \times 10^{-10} = \frac{[OH]^2}{0.0500}$	
		$[OH^{-}] = \frac{2.7503 \text{ x}10^{-6}}{\text{mol dm}^{-3}}$	
		$pOH = -lg(2.75 \times 10^{-6}) = 5.5606$	
		pH = 14 - 5.5606 = <u>8.44</u>	

(iv)	Table 2.3 shows son	ne data on six indic	ators.		
		Tabl	e 2.3		
	indicator	colour in acid	colour in alkali	pH range of	
				colour change	
	methyl orange	red	yellow	3.2 - 4.4	
	methyl red	red	yellow	4.8 - 6.0	
	bromocresol	yellow	purple	5.2 - 6.6	
	purple				
	bromocresol blue	yellow	blue	6.0 - 7.6	
	phenolphthalein	colourless	pink	8.2 – 10.0	
	thymolphthalein	colourless	blue	8.8 – 10.5	
	With reference to yo	ur answer in (c)(iii)	and Table 2.3, stat	e and explain which	
	indicator is the most	suitable for the neu	itralisation of benzoi	ic acid by potassium	
	hydroxide.				[2]
	Phenolphthalein [1]				
	pH of 8.44 at the	equivalence point	falls within the	working range of	
	phenolphthalein, w	<u>hich is from 8.2 –</u>	<u>10.0</u> . [1]		
(v)	A primary standard is	s a reagent which o	can be used to accu	rately determine the	
	concentration of an	analyte. A potas	sium hydroxide solu	ution with unknown	
	concentration can be	e standardised by	carrying out acid-ba	ase titration with the	
	primary standard, be	nzoic acid.			
	Suggest a property o	of benzoic acid which	ch makes it suitable	for use as a primary	
	standard.				[1]
	Any one of the follow	/ing [1] :			
	Benzoic acid	is <u>pure</u> .			
	Benzoic acid	reacts rapidly wit	<u>h KOH</u> .		
	Benzoic acid	is not hygroscop	<mark>ic / does not absor</mark>	<u>b moisture</u> .	
	Benzoic acid	reacts with KOH	i <mark>n a 1:1 mole ratio</mark> .		
	Benzoic acid	l has a <u>relatively</u>	<u>/ large molar ma</u>	<u>ss</u> , which helps to	
	minimise wei	ghing error.			
	Benzoic acid	is <u>stable</u> .			
				[Total	: 21]



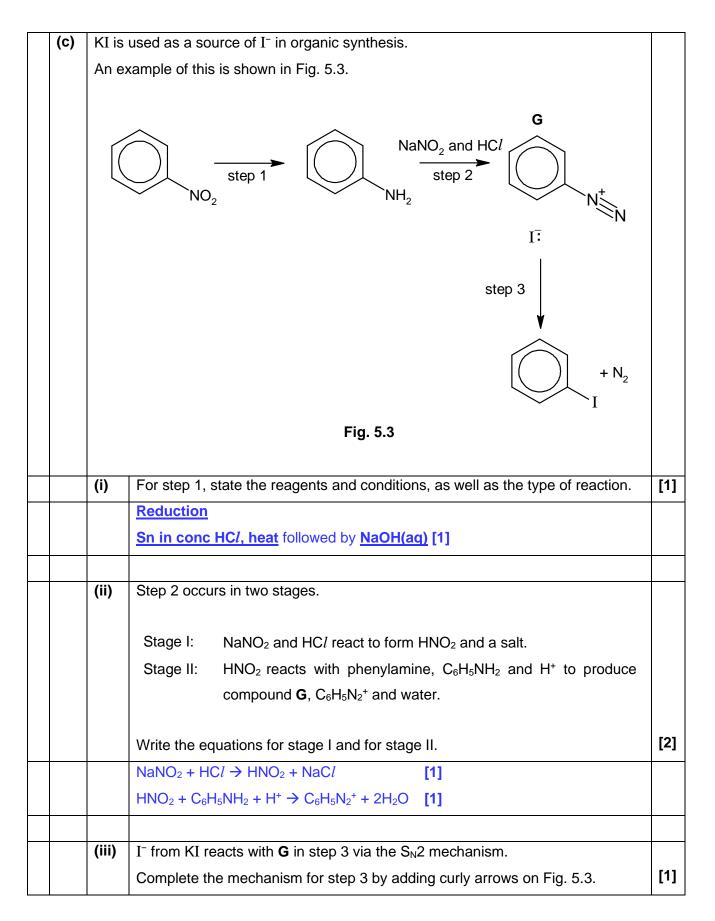

(b)		lution of $[Cu(NH_3)_4(H_2O)_2]^{2+}$ is made by dissolving CuSO ₄ •5H ₂ O in an excess of .	
	aque	eous ammonia.	
		solution of $[Cu(NH_3)_4(H_2O)_2]^{2+}$ is heated gently so that NH ₃ is released. Some remains in solution and some forms NH ₃ gas. The colour of the solution changes;	
		ecipitate of $Cu(OH)_2$ forms and is collected. The precipitate is divided into two	
	porti		
	The	first portion is added to concentrated hydrochloric acid and a coloured copper	
	com	plex, X , is formed. The second portion is added to dilute sulfuric acid to form a	
	diffe	rent coloured copper complex, Y.	
	(i)	Explain why a solution of $[Cu(NH_3)_4(H_2O)_2]^{2+}$ is coloured.	[3]
		In the presence of ligands like H ₂ O and NH ₃ , the partially filled 3d orbitals	
		split into 2 energy levels with a small energy gap between them. [1]	
		An electron from the lower energy d orbital absorbs energy from the	
		visible region of the electromagnetic spectrum with wavelength corresponding	
		to the energy gap and gets promoted to a higher energy d orbital. [1]	
		The light energy/blue colour not absorbed is reflected and observed as the	
		colour of the complex. [1]	
	(ii)	Suggest an equation for the heating of $[Cu(NH_3)_4(H_2O)_2]^{2+}$ solution.	[1]
		$[Cu(NH_3)_4(H_2O)_2]^{2+} \rightarrow Cu(OH)_2 + 2NH_4^+ + 2NH_3 $ [1]	
		OR	
		$[Cu(NH_3)_4(H_2O)_2]^{2+} \rightarrow Cu(OH)_2 + 2H^+ + 4NH_3 [1]$	
	(iii)	State the identify of complexes X and Y.	[2]
		X: [CuCl₄] ²⁻ [1]	
		Y: [Cu(H ₂ O) ₆] ²⁺ [1]	
	(iv)	The enthalpy change for the following reactions are similar.	
		Reaction 1 $[Cu(H_2O)_6]^{2+} + 2en \rightleftharpoons [Cu(en)_2(H_2O)_2]^{2+} + 4H_2O$	
			1

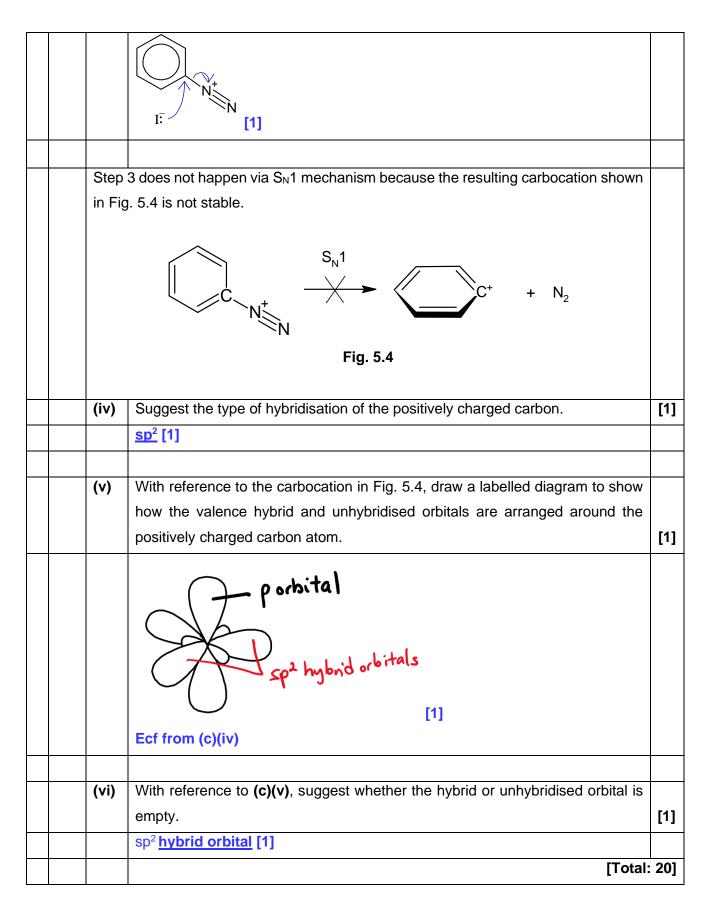


	(c)	The	decomposition of hydrogen peroxide can be catalysed by transition metal ions,					
		such	as Fe ³⁺ .					
			$2H_2O_2 \rightarrow 2H_2O + O_2$					
		With	With the aid of relevant data from the <i>Data Booklet</i> , show how Fe ³⁺ can catalyse the					
		deco	proposition of H_2O_2 .					
		In yc	our answer, give relevant equations for the reactions that occur.	[3]				
		Step	1					
		O ₂ +	$2H^+ + 2e^- \rightleftharpoons H_2O_2 \qquad \qquad E^{\theta} = +0.68 \text{ V}$					
		Fe ³⁺	$+ e^{-} \rightleftharpoons Fe^{2+}$ $E^{\theta} = +0.77 V$					
		<u>H₂O;</u>	$2_2 + 2Fe^{3+} \rightarrow O_2 + 2H^+ + 2Fe^{2+}$					
		E^{θ}_{cell}	= +0.77 - (+0.68) = <u>+0.09 V</u>					
		Step	2					
		H ₂ O ₂	$_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$ $E^9 = +1.77$					
		<u>H₂O;</u>	$2_2 + 2H^+ + 2Fe^{2+} \rightarrow 2H_2O + 2Fe^{3+}$					
		E^{θ}_{cell}	= +1.77 - (+0.77) = <u>+1.00 V</u>					
	(d)	An a	Ikaline manganese electrochemical cell is used to generate electricity.					
		The	half-equations for the cell are as given.					
			$ZnO(s) + H_2O(l) + 2e^- \implies Zn(s) + 2OH^-(aq)$ $E^{\theta} = -1.28V$					
			$2MnO_2(s) + H_2O(l) + 2e^- \Longrightarrow Mn_2O_3(s) + 2OH^-(aq) \qquad E^\theta = +0.15V$					
		(i)	Construct a balanced equation for the reaction that takes place when the cell					
			is discharged.	[1]				
			$\underline{Zn(s) + 2MnO_2(s)} \rightarrow \underline{ZnO(s) + Mn_2O_3(s)}$ [1]					
			State symbols are not required.					
		(ii)	Calculate the standard Gibbs free energy change, ΔG^{θ} , for this electrochemical					
			reaction.	[2]				
			$E^{\theta}_{\text{cell}} = +0.15 - (-1.28)$					
			= <u>+1.43V</u> [1]					
			$\Delta G^{\theta} = - (2 \times 96500 \times 1.43)$					
			= <u>– 276000 J mol⁻¹</u> (3sf) [1]					
L	L							

	(iii)	State and explain what happens to the cell potential, E_{cell} , when Mg ²⁺ ions are	
		added to the ZnO/Zn half-cell.	[2]
		When Mg ²⁺ ions are added, Mg(OH) ₂ will be precipitated causing [OH-] to	
		decrease.	
		$ZnO(s) + H_2O(I) + 2e^- \implies Zn(s) + 2OH^-(aq)$	
		As such position of equilibrium shifts to the right . <i>E</i> (ZnO/Zn) becomes	
		more positive/less negative. E _{cell} become less positive.	
		[Tota	al: 20]

	(iii)	A constitutional isomer of t-butylbenzene has a chiral carbon and no internal	
		plane of symmetry.	[0]
		Draw this structure as a pair of enantiomers.	[2]
		CH_{3} H^{WW} $CH_{2}CH_{3}$ H^{WW} $CH_{2}CH_{3}$	
		Mirror	
		[Tota	al: 11]

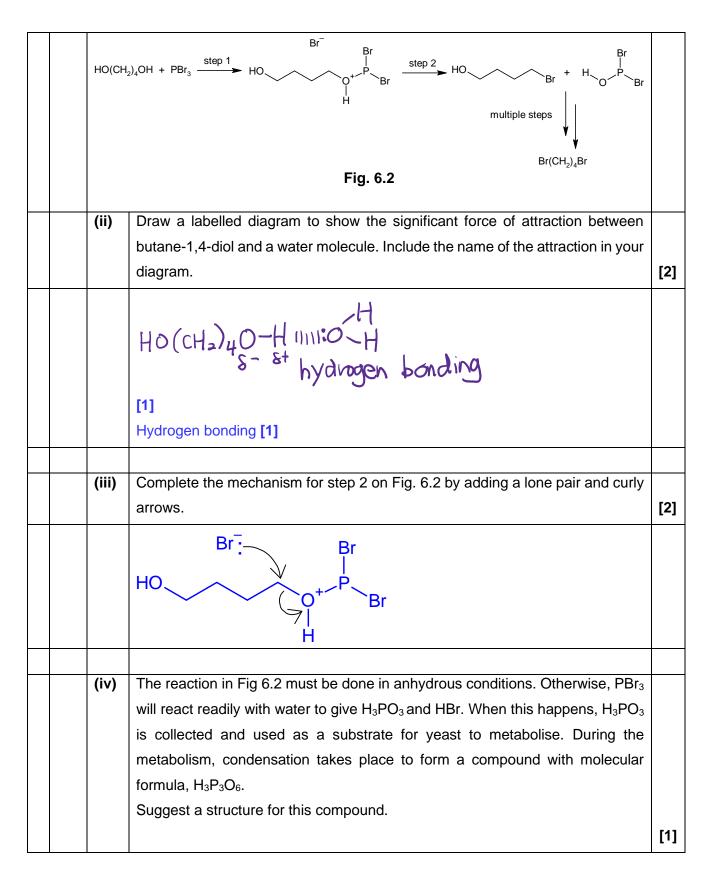

Section B


Answer **one** question from this section.

(a)	(i)	Use of the Data Booklet is relevant to this question.
		The cubic unit cell is the smallest repeat unit in an ionic lattice structure. An
		example of a cubic unit cell is the simple cubic unit, as shown in Fig. 5.1.
		Fig. 5.1
		The density of an ionic compound can be calculated using the following formula
		density = $\frac{Z \times M}{a^3 \times N_A}$
		Z = number of ions in one cubic unit cell
		a = edge length of cubic unit cell in cm
		M = formula mass of one mole of ionic compound
		N _A = Avogadro's constant
		Given that potassium iodide has an edge length of 705 pm and there are four
		ions in one cubic unit cell, calculate the density of potassium iodide in g cm $^{-3}$.
		$1 \text{ pm} = 10^{-10} \text{ cm}$
		Density = $\frac{4 \times (39.1+126.9)}{(705 \times 10^{-10})^3 \times (6.02 \times 10^{23})} = \frac{3.15 \text{ g cm}^{-3}}{3.15 \text{ g cm}^{-3}}$
	(ii)	Potassium iodide can be synthesised by heating iodine with concentrated
	(")	potassium hydroxide. Besides potassium iodide, potassium iodate(V), KIO ₃ ,
		and water are produced.
		Construct a balanced equation for this reaction. State the type of reaction.
		$3I_2 + 6KOH \rightarrow 5KI + KIO_3 + 3H_2O$ [1]
		Disproportionation [1]

	(iii)	lodine is known to sublime easily. A mass of 1.00 g of I_2 solid was placed into	
		a gas syringe at 79 °C. The volume of iodine gas collected was 67 cm ³ . The	
		temperature was kept constant at 79 °C and the pressure was 1 bar.	
		Calculate the percentage of iodine that sublimed.	[2]
		pV = nRT	
		(1 x 10 ⁵) x (67 x 10 ⁻⁶) = n x 8.31 x (79 + 273)	
		n = 2.2905 x 10 ⁻³ mol [1]	
		Mass of I_2 = 2.2894 x 10 ⁻³ x (126.9 x 2) = 0.58132 g	
		% sublimation = 0.58105/1.0 x 100% = <u>58.1%</u> [1]	
	(iv)	Predict the colour of the solution that would be observed when the following	
		pairs of solutions are mixed.	
		 KI(aq) is added to Cl₂(aq), 	
		 KCl(aq) is added to I₂(aq). 	
		Write equations for any reactions that occur. Explain your answer using E^{θ}	
		values from the Data Booklet.	[2]
		$Cl_2 + 2e \rightleftharpoons 2Cl^-$ E^θ = +1.36V	
		$I_2 + 2e \Rightarrow 2I^-$ E^θ = +0.54V	
		$\underline{2KI + Cl_2 \rightarrow 2KCl + I_2}$	
		$\underline{E^{\theta}_{\text{cell}}} = (+1.36) - (+0.54) = +0.82V$	
		Since $E^{\theta}_{cell} > 0$, Cl_2 oxidises I ⁻ to form I ₂ . OR	
		Since $\underline{E^{\theta}(Cl_2/Cl^-)}$ is more positive $E^{\theta}(I_2/I^-)$, Cl_2 will be reduced and I ⁻ will be	
		oxidised.	
		The solution turns from pale yellow to brown .	
		No reaction when KCl(aq) is added to $I_2(aq)$ because $\underline{E^{\theta}(Cl_2/Cl^{-})}$ is more	
		positive E^{θ}(I₂/I⁻) , I ₂ cannot oxidise Cl ⁻ . Solution remains brown .	
	.		<u> </u>
(b)		ssium iodide is a common additive used to "iodise" salt, so as to prevent io	
		iency in humans. However, when the iodised salts are exposed to air, oxidatic	
	iodid show	e ion occurs to cause a loss in iodine content. The equation for this reaction i	s as
		$4KI(s) + 2CO_2(g) + O_2(g) \rightarrow 2K_2CO_3(s) + 2I_2(s)$	

	(i)	Suggest the appearance of an aged sample of iodised salt after exposure to moist air for some time.	[1]
		The aged sample salt appears brown or black due to formation of I ₂ . [1]	
		Reject purple.	
	(ii)	Potassium carbonate decomposes on strong heating in a similar manner to	
		calcium carbonate.	
		Suggest why very high temperatures are needed for the thermal decomposition	
		of potassium carbonate.	[2]
		<u>Charge density</u> and hence, polarising power <u>of K⁺ is low</u> due to its small	
		charge and large cationic radius. Hence, the electron cloud of CO_3^{2-} is	
		distorted/polarised to a small extent, resulting in C-O to be weakened to a	
		small extent, requiring a lot of energy to overcome it.	
_			
	(iii)	To prevent the loss of iodine by oxidation, potassium iodate, KIO ₃ , is used to	
		iodise some salts. IO_3^- is resonance stabilised. Fig. 5.2 shows the resonance	
		structures of IO_3^- .	
		$\bigcup_{I \\ O \neq I \\ O =$	
		Fig. 5.2	
		Draw the third resonance structure of IO_3^- . Hence, explain why IO_3^- is	
		resonance stabilised.	
			[2]
		The lone pair of electrons on O ⁻ and the pi electrons are delocalised, leading to	
		the delocalisation of negative charge over the 3 O atoms / over O-I-O. [1]	



6	Glyc	ine, H	2NCH2COOH, is the simplest amino acid that exists.		
	(a)	Glyci	cine exists as a zwitterion at pH 6.2.		
		(i)	State what is meant by the term <i>zwitterion</i> .	[1]	
			A zwitterion is a <u>neutral</u> compound that has <u>both positive and negative</u>		
			charges. [1]		
			OR		
			A zwitterion is a compound/species that has equal number of positive and		
			negative charges. [1]		
		(ii)	Draw the structure of the predominant species of glycine at pH 12.0.	[1]	
			H ₂ NO ⁻ [1]		
		(iii)	A molecule of glycine can react with a molecule of aspartic acid to form two		
		(,	dipeptides.		
			aspartic acid		
			Draw the structures of these dipeptides. The peptide bond formed in each dipeptide should be shown displayed.	[2]	
			$ \begin{array}{c} $		
_		(iv)	The melting points of glycine and aspartic acid are shown in Table 6.1.		

			Table 6.1	
			compound melting point/°C	
			glycine 233	
			aspartic acid 270	
			Explain, in terms of structure and bonding, the similarity in melting points of	
			glycine and aspartic acid.	[1]
			Both amino acids exist as giant ionic lattices with ionic bonds of similar	
			strength between the zwitterions. Hence, similar amount of energy is	
			required to break the ionic bonds and the melting points are thus similar. [1]	
(b) F	-ig. 6	.1. shows two syntheses starting with glycine.	
	r	eaction C	BrCH ₂ CH ₂ CH ₂ CH ₂ Br heat under pressure κ ₆ H ₁₁ NO ₂ J Fig. 6.1	
		(1)	For we offense 4 and 9 state the time of resistion and the response and ear difference	
		(i)	For reactions 1 and 2, state the type of reaction and the reagents and conditions needed.	[2]
			Step 1: <u>condensation</u> , <u>C₆H₅COCI</u> (penalise when (aq) is given) [1]	[2]
			Step 2: reduction, LiA/H₄ in dry ether [1]	
		(ii)	Draw the structure of compound J .	[1]
	((11)		[1]
	((iii)	A student proposed the reaction of benzamide, $C_6H_5CONH_2$, with	
			chloroethanoic acid to form compound K.	
1			Explain why this synthesis cannot work.	[1]

24

		In benzamide, the <u>lone pair of electrons on N is delocalised over N-C-O</u> and into the benzene ring. Hence, the lone pair of electrons on N is <u>not available</u> / <u>benzamide cannot be a nucleophile</u> to attack the C of C-C <i>l</i> . [1]	
	(iv)	Table 6.2compound pK_a chloroethanoic acid2.93-chloropropanoic acid4.0Suggest a reason why the pK_a of 3-chloropropanoic acid is higher than the pK_a	
		of chloroethanoic acid. In 3-chloropropanoate, the <u>electron-withdrawing or electronegative Cl is</u>	[2]
		further away from the negative charge on O. Hence, the <u>negative charge</u> on O is less dispersed. As <u>3-chloropropanoate is less stable</u> , <u>less H⁺ is</u> produced from 3-chloropropanoic acid and <u>3-chloropropanoic acid is less</u> <u>acidic</u> .	
(c)	into I phos	phorus tribromide, PBr ₃ , is commonly used in the laboratory to convert alcohols promoalkanes. In the first step of this reaction, it involves the alcohol attacking phorus in phosphorus tribromide with its lone pair of electrons on oxygen atom, ting in the formation of Br ⁻ leaving group.	
	(i)	 Phenol does not react with PBr₃. Suggest why there is no reaction between these two compounds. Phenol is a poor nucleophile as the <u>lone pair of electrons on O will delocalise</u> <u>into benzene ring</u>. [1] 	[1]
	butar	reagent used in reaction 3 of Fig. 6.1 can be produced from the reaction of $ne-1,4$ -diol with PBr ₃ . mechanism for the reaction between butane-1,4-diol and PBr ₃ is shown in 6.2.	

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}$	
(v)	Describe and explain the trend in the thermal stability of the hydrogen halides	
	HCl, HBr and HI. Include an equation for the thermal decomposition of	
	hydrogen halides, HX, in your answer.	[3]
	$\frac{2HX \rightarrow X_2 + H_2}{2HX \rightarrow X_2 + H_2}$	
	HC <i>l</i> does not decompose.	
	HBr decomposes slightly to give reddish brown gas .	
	HI decomposes readily to give purple fumes .	
	Thermal stability decreases from HCl to HBr and to HI.	
	Atomic radius / size of halogen atom increases from Cl to Br and to I.	
	Hence, the extent of effective orbital overlap between valence orbital of	
	halogen and 1s of H becomes poorer down the group.	
	The strength of H-X thus decreases from HCl to HBr and to HI.	
	[Total:	20]

END OF PAPER