Mark Scheme for Practical

Qn		Marking Point									
1(a)	(i) Raw <i>L</i> to	Raw <i>L</i> to the nearest 0.1 cm and final value in the range 11.5–12.5 cm.									
1(a)(ii) Percenta in the rar If repeat the range Correct r	Percentage uncertainty based on an absolute uncertainty ΔL in the range 2–5 mm. If repeat readings have been taken, then the absolute uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.									
1(b)	(i) All raw t i Evidence Value of	All raw times measured either to the nearest 0.1 s or all to the nearest 0.01 s. Evidence of measurement of nT repeated where $nT \ge 10.0$ s. Value of <i>T</i> in the range 0.5 s $\le T \le 1.0$ s.									
1(b)(ii) Calculati	on of <i>T</i> ² correct.							1		
1(b)(ii) Justificat in (raw)	Justification of the number of significant figures in terms of the number of s.f. in (raw) time only.									
1(c)	(i) Raw <i>L</i> to	the nearest 0.1	cm and final va	alue in t	he range	5.5–6.5	cm.		1		
1(c)(ii) Second	value of <i>T</i> < first	value of <i>T</i> .						1		
1(d)	(i) Calculate sf among Unit: cm ⁰	Calculated correctly two values of k with unit and recorded to the least no. of sf among T and L . The final k values must not be fractions. Unit: $cm^{0.5}s^{-1}$ or equivalent									
1(d)(ii) <u>Justifica</u> Note: TI • Calc	Justification of Relationship Note: The given relation is valid for a compound pendulum. • Calculated correctly % $k_{uncertainty} = \frac{\Delta k}{k_{ave}} \times 100\%$ OR Δk									
	 Δ k = Chose 	• $\Delta k = k_1 - k_2 $ OR $\Delta k = k_1 - k_2 /2$ • Chose a criterion from the value in (a)(ii).									
	 Concluded that results do not support the suggestion if %k_{uncertainty} > the criterion chosen. OR Concluded results support the suggestion if %k_{uncertainty} < the criterion chosen (Expected) 										
1(e) Correct o in range	Provide the second of the sec									
	number of occes	time for n oscn ±1 / s	time for a occasta / a	T/0 1/	m k/mc^1	a / m ch 2	%111	Comme	ont		
(b)(ii)/ (b)(iii)	14	10.6	10.5	0.754 0.11	20 0.459	9.81	1.7	this should be appropriate 2 of k used to fi to smaller 9	the more nd value nd g due 6 error		
(c)(ii)	40	21.8	21.6	0.542 0.0	60 0.45	9.5	3.3				
Fig. 1 Excel-Generated Theoretical Table for Q1											

Total	14

Qn	Marking Point							
2(a)	$R - \frac{V}{V}$							
	R measured while resistor is in operation i.e.,	•						
	Value of R_{A} , R_{B} and R_{C} with unit in the range 64 - 72 Ω .	1						
	V/V//mA B/ohm Nominal / ohm Multimeter / ohm							
	R A 2.03 29.9 67.9 68.2							
	R_B 2.02 30.1 67.1 67.8							
	R_C 2.02 30.2 66.9 67.5							
	67.3 68.0 67.8							
	Fig. 2a Excel-Generated Theoretical Table for Q2a							
2(b)(i)	Value of <i>I</i> with unit in the range 30.0–50.0 mA.							
2(c)	Seven sets of readings of R : 22.7 Ω , 34.0 Ω , 45.3 Ω , 68.0 Ω , 102 Ω , 136 Ω & 204 Ω Six sets of readings of R							
	Column headings: Each column heading must contain a quantity, a unit, and a separating mark where appropriate. The presentation of quantity and unit must conform to accepted scientific $\frac{1}{l}$ / mA ⁻¹ .							
	Consistency of presentation: All raw values of <i>I</i> must be given to 0.1 mA or all to 0.01 mA.							
	Significant figures: $1 \\ \overline{I}$ All values of \overline{I} must be given to the same number of s.f. as the number of s.f. in raw <i>I</i> . Calculation: Values of \overline{I} are correct.							

			<i>v</i> / v	/ mA	R / ohm	1// / mA⁄	-1		
		R_A only	2.76	40.9	67.5	0.0244	(b)		
	R_A and	R_B in parallel	2.07	61.3	33.8	0.0163			
	R_A, R_B and	R_C in parallel	1.65	73.6	22.4	0.0136			
	R_A an	d R_B in series	3.32	24.5	135.5	0.0408			
	<i>R</i> _A. <i>R</i> _B an	d R_C in series	3.56	17.5	203.4	0.0571			
R_A an	d R_B in series w	R_C in parallel	2.36	52.7	44.8	0.0190			
R_A an	R_A and R_B in parallel w R_C in series 3.11 30.7 101.3 0.032								
Fig. 2b Excel-Generated Theoretical Table for Q2c									
2(d)	Stated appropriate graph $\left(\frac{1}{I} \operatorname{against} R\right)$ to be plotted.						1		
	<i>E</i> is determined by the inverse of the gradient. <i>X</i> is determined by product of <i>y</i> -intercept and <i>E</i> .								
						Total	10		

Qn	Marking Point								Marks	
3(a)	Value of S with unit in the range 4.50 – 5.50 cm.								1	
3(b)(iii)	Measu Record neares	Measurement and Observation Recorded two values of S_1 and two values of S_2 , and their averages to nearest 0.001 m (i.e., 0.1 cm).								
3(b)(iv)	p and c	<i>p</i> and <i>q</i> calculated correctly, and recorded to nearest 0.001 m (i.e. 0.1 cm) .								
3(c)	Six (or	Six (or more) sets of readings of m , including $m = 100$ g and $m = 400$ g								
	Column Each c where The pro conver	Column headings: Each column heading must contain a quantity, a unit, and a separating mark where appropriate. The presentation of quantity and unit must conform to accepted scientific convention, e.g. $m / g, S_1 / cm, S_2 / cm, p / cm, q / cm, mg / N and \sqrt{\frac{p^2}{4} + q^2} / cm$.								
	Consis All raw All raw	Consistency of presentation: All raw values of S_1 and S_2 must be given to 0.1 cm. All raw values of <i>m</i> must have no d.p. in g.								
	Decima All valu of d.p. Signific All valu in raw All valu Calcula	Decimal places: All values of <i>p</i> and <i>q</i> must be given to the same number of d.p. as the number of d.p. in raw S ₁ and S ₂ respectively. Significant figures: All values of <i>mg</i> must be given to the same number of s.f. as the number of s.f. in raw <i>m</i> . All values of $\sqrt{\frac{p^2}{4} + q^2}$ must be given to the least no. of s.f. among <i>p</i> and <i>q</i> Calculation: Values of <i>mg</i> and $\sqrt{\frac{p^2}{4} + q^2}$ are correct.								
<i>m</i> / g	\$1,1 / cm	\$2,1 / cm	\$1,2 / cm	\$2,2 / cm	p_ave / cm	q_ave / cm	mg / N	((p^2)/4+q^2)^0.	5 / cm	
400	27.8	18.0	27.8	18.0	17.8	13.0	3.9	15.8		
350	24.8	16.5	24.8	16.5	14.8	11.5	3.4	13.7		
300	22.5	15.0	22.5	15.0	12.5	10.0	2.9	11.8		
250	19.8	13.2	19.8	13.2	9.8	8.2	2.5	9.6		
200	17.1	11.5	17.1	11.5	7.1	6.5	2.0	7.4		
100	J 13.2 8.4 13.2 8.4 3.2 3.4 1.0 3.8									
Fig. 3 Excel-Generated Theoretical Table for Q3c										

For internal use only DHS2021

3(d) (graph)	 Sensible scales must be used. Awkward scales (e.g., 3:10) are not allowed. Scales must be chosen so that plotted points occupy at least half the graph grids in both <i>x</i> and <i>y</i> directions. Axes must be labelled with the quantity which is being plotted. 	1
	 Straight line of best fit- judge by scatter of points about the candidate's line. No curved lines allowed. There must be an even distribution of points on either side of the line along the full length. Allow maximum (correctly identified) one anomalous point if clearly indicated on graph i.e., circled or labelled. There must be at least five points left after the anomalous point is disregarded. Lines must not be kinked or thick. No hairy lines. (No curved lines allowed). 	1
	All observations in table must be plotted. Work to an accuracy of plot \leq 0.5 small square.	1
3(d) (CALN)	 Equation linearised correctly. Plot a <u>sensible graph</u> that allows for straight line to be drawn and <i>k</i> to be determined from the gradient. e.g. mg / N vs 	1
	 Gradient calculated correctly with clear working. The hypotenuse of the gradient triangle must be greater than half the length of the drawn line. Read-offs must be accurate to half a small square. 	1
	• <i>k</i> determined correctly from gradient with unit.	1
3(e)	Comments on whether there are any anomalous data - with the anomalous data clearly identified e.g., <i>"There are no anomalous points as all plotted points are evenly distributed on both sides of the best fit line and no point is <u>significantly further</u> from the best fit line compared to other points." Justifies whether there is any anomalous data based on deviation of the points from the linear trend e.g., <i>"Point (4.300, 7.00) is an anomalous point because point (4.300, 7.00) is significantly further</i> from the best fit line as compared to other points."</i>	1
3(f)(i)	Difficult to measure angle with reason e.g., hand shakes / curve at bottom / position of zero uncertain / parallax / holding set square without a stand	1
3(f)(ii)	Trace on a card / use graph paper / project onto screen and measure angle / use trigonometry / take photo and measure angle / clamp set square	1

For internal use only DHS2021

Qn	Marking Point	Marks			
4	Mark Scheme				
 <u>Defining the problem</u> A1: identify independent (frequency <i>f</i> of light, thickness of glass <i>t</i>) and dependent (ratio <i>A</i>/<i>A</i>₀) variables A2: identify control variable (e.g. keep distance between light source and sensor constant) 					
Method of data collection B1: labelled diagram showing a setup of laser, glass block(s) and light sensor in a line B2: method to determine the different frequencies of laser (e.g. using diffraction					
grati B3: meth B4: meth meter co	Ing and $n\lambda = d \sin \theta$ od to determine thickness of glass <i>t</i> , using vernier calipers or metre rule od to measure intensity of light e.g. use light sensor / light intensity nnected to datalogger and taking initial reading of I_0) mination of A^{A/A_0} from the formula $I \propto A^2$	1 1 1			
B5: determination of $A^{A \cap A_0}$ from the formula $I \propto A^2$ B6: identifying 2 runs required (run 1: vary thickness, keep frequency constant) (run 2: vary frequency, keep thickness constant)					
Method of Analysis C1: linearization of relationship $\ln(A / A_0) = \ln(k) + p \ln(t) + q \ln(f)$ C2: $\ln(A / A_0) = \ln(k) + p \ln(t) + q \ln(f)$					
Run 1: pl si Run 2: pl si	raight line with gradient <i>p</i> , y-intercept $\ln(k) + q \ln(f)$ ot $\ln(A / A_0)$ against $\ln(f)$, raight line with gradient <i>q</i> , y-intercept $\ln(k) + p \ln(t)$	1			
<u>Safety</u> D1: do no	ot look directly into the light source.	1			
Additiona E1: perfo E2: detai by mease E3: mease E4: take before th thicknesse E5: ensu	I details: (max 3) rm experiment in dark room to reduce noise in the form of ambient light led description to determine the angle of diffraction through the grating, uring distances and using trigonometry relations sure thickness of the glass blocks at different positions and average <i>t</i> . preliminary measurements of the intensity with the largest thickness e start of the experiment. If the intensity is too low, reduce the maximum of glass block. re light reaches the light meter perpendicularly.	1 1 1 1 1			
	MAX	12			