Civics Group	Index Number	Name (use BLOCK LETTERS)	H1

ST ANDREW'S JUNIOR COLLEGE 2022 JC2 Weighted Assessment 1	
H1 BIOLOGY	8876
STRUCTURED QUESTIONS	45 minutes

READ THESE INS	TRUCTIONS FIRS	г 🗲			
hand in. Write in dark blue o You may use a sof	ivics group and inde or black pen on both t pencil for any diag , paper clips, highlig	n sides of the pap ram, graph or ro	ber. ugh working.		
Answer all question All working for num	ns. Jerical answers mus	t be shown.			
	R		. A	Z	
				For Exan	niner's Use
Conceptual error (C)	Data Quoting (D)	Expression (E)	Misreading the question (Q)	STQ 1	/14
				STQ 2	/12
				Total	/26

This document consists of 6 printed pages.

[Turn over

QUESTION 1

BRCA 1 and BRCA2 are tumour suppressor genes which code for tumour suppressor proteins associated with DNA repair. Women with harmful mutations in either *BRCA1* or *BRCA2* are five times more likely to develop breast cancer and 10-30 times more likely to develop ovarian cancer than women without any BRCA mutations. Fig. 1.1 shows the progression of breast cancer.

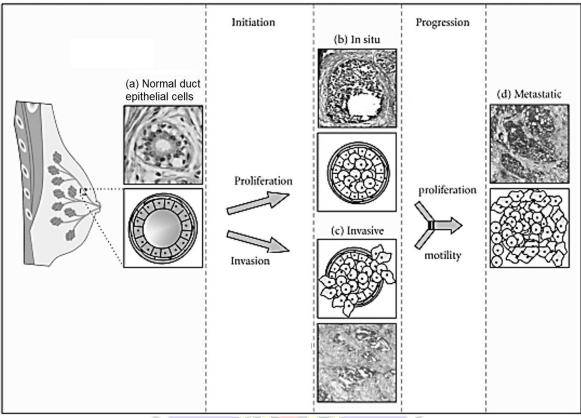
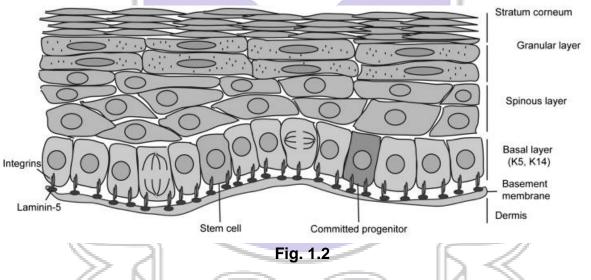


Fig. 1.1

- (a) (i) Describe and explain how the multi-step process of cancer development relates to the information given as well as Fig 1.1.
- 1 <u>Accumulation</u> of many mutations, including <u>BRCA</u> 1 and BRCA2
- 2 lead to excessive proliferation of the duct epithelial cells
- 3 Activation of <u>telomerase gene</u> enables cells to **divide indefinitely**.
- 4 Further mutations can lead to loss of <u>contact inhibition/density-dependent</u> <u>inhibition</u> which leads to **tissue invasion**.
- 5 Ref. Formation of benign tumour.
- 6 Loss of anchorage-dependent inhibition leads to metastasis/motility.
- 7 At this point, the tumour is considered <u>malignant.</u>
 - (ii) Compare between cancerous breast duct epithelial cells and normal epithelial stem cells.

.....[4]


Similarities:

- 1 Both are unspecialised and undifferentiated.
- 2 Both can replicate indefinitely / both have telomerase activity.

Differences [any 2]:

		Cancerous epithelial cell	Stem epithelial cell	
Ability	to	Do not differentiate into other	Differentiate into duct	
differentiate		cell types.	epithelial cells.	
Cell division		Undergo uncontrolled cell	Undergo normal cell division.	
		division.		
Anchorage-		Do not exhibit anchorage-	Exhibit anchorage-dependent	
dependent		dependent inhibition.	inhibition.	
inhibition		/density-dependent	/density-dependent	
		/contact-dependent	/contact-dependent	

(b) Fig. 1.2 shows the various types of cells that are found in the human skin. Cells in the spinous layer, granular layer and stratum corneum provides a barrier protection against pathogens in the external environment. Stem cells in the basal layer will divide and differentiate into committed progenitors, which can only divide a limited number of times to give rise to cells in the layers above it. Only 2-7% of the cells in the basal layer are stem cells.

- (i) Describe the differences between the skin stem cell and the committed progenitor cell.
 - [2]
 1 Skin stem cells are capable of self renewal / has telomerase while committed progenitors cells do not have/lower self-renewal ability / no telomerase.
 - 2 Skin stem cells have **higher** potency level than committed progenitor cells. (note: both may be multipotent. But committed progenitor cells are more limited in the types of cells they can differentiate into)

Human induced pluripotent stem cells (hiPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. Fig. 1.3 shows an outline of the production if hiPSCs and its use in treating burn victims.

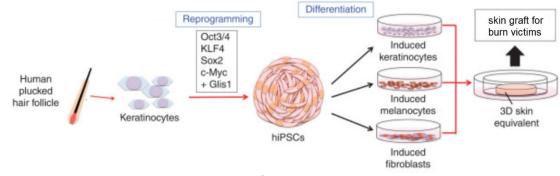


Fig. 1.3

(ii) Suggest two advantages of using hiPSCs over the use of other types of treatment for burn victims.

1 No tissue rejection because the patient's own cells are used to produce the

- iPSCs, compared with using a donor's stem cells.
- 2 Fewer ethical concerns because no human blastocysts were destroyed in the process, compared with the use of human embryonic stem cells.
- 3 Non-invasive as you just need to pluck a hair from the patient, compared to grafting skin from another part of the patient's body.
- 4 No need to find a matching donor.

[Total: 14]

QUESTION 2

In a species of pea plants, the plants can produce smooth seed pods or constricted seed pods with seeds ranging from two to four seeds each. Fig. 2.1 shows the appearance of some seed pods that can be observed.

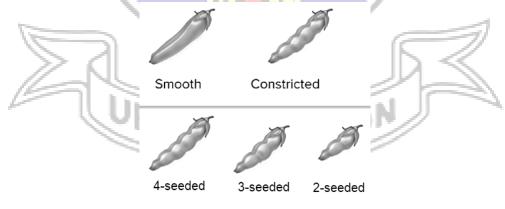


Fig. 2.1

A pure-breeding plant with 4-seeded constricted pods was crossed with a purebreeding plant with 2-seeded smooth pods. All the F_1 generation had 3-seeded constricted pods. The F_1 generation were selfed to produce F_2 generation.

(a) Draw a genetic diagram to show the selfing of the F_1 generation.

......[4]

F1 phenotype: 3-seeded constricted pods X 3-seeded constricted pods

F ₁ genotype:		CcS ^F S ^f		
F₁ ga	metes: (CS ^F) (CS	$S^{f}(CS^{F})(CS^{f})$ $(CS^{F})(CS^{f})(CS^{F})$		$f(\mathbf{cS}^{F})$
	CSF	CS ^f	cS ^ϝ	cS ^f
	CCSFSF	CCSFSf	CcSFSF	CcSFSf
CSF	4-seeded	3-seeded	4-seeded	3-seeded
	constricted pod	constricted pod	constricted pod	constricted pod
	CCS ^F S ^s	CCS ^f S ^f	CcS ^F S ^f	CcS ^f S ^f
CS ^f	3-seeded	2-seeded	3-seeded	2-seeded
	constricted pod	constricted pod	constricted pod	constricted pod
	CcSFSF	CcSFSf	ccSFSF	ccS ^F S ^f
cSF	4-seeded	3-seeded	4-seeded	3-seeded
	constricted pod	constricted pod	smooth pod	smooth pod
	CcS ^F S ^f	CcS ^f S ^f	ccSFSf	ccSfSf
cSf	3-seeded	2-seeded	3-seeded	2-seeded
	constricted pod	constricted pod	smooth pod	smooth pod

 F_2 phenotypic ratio: 3 4-seeded constricted pod : 6 3-seeded constricted pod : 3 2-seeded constricted pod : 1 4-seeded smooth pod : 2 3-seeded smooth pod : 1 2-seeded smooth pod.

Mark scheme:

- 1 F₁ phenotype match with genotype (use of superscript)
- 2 Gametes (circled)
- 3 Punnet square/F₂ genotypes
- 4 F₂ genotypes matched with phenotypes + F₂ phenotypic ratio
- (b) An F₂ generation plant with 3-seeded constricted pod was selected at random to be test crossed. Considering all possible scenarios, what is the probability of producing plants with 3-seeded constricted pods? Show your working using genetic diagrams.

Test crossing CCS ^F S ^f :						
F2 phenotype: 3-s	eeded constricted pods X	2-seeded smooth pods				
F ₂ genotype:	CCS ^F S ^f	ccSfSf				
F ₂ gametes:	$(CS^{F})(CS^{f})$					
F ₃ genotypes:	CcSFSf	CcS ^f S ^f				
F ₃ phenotypic ratio	: 1 3-seeded constricted pod :	1 2-seeded constricted pod				

Probability of producing 3-seeded constricted pod = $\frac{1}{2}$

Test crossing CcS^FS^f:

F₂ phenotype: 3-seeded constricted pods X 2-seeded smooth pods

F₂ genotype:

$$\begin{array}{c}
CcS^{F}S^{f} \\
\hline
CS^{F} \\$$

F₃ genotypes:

F₂ gametes:

	CSF	CS ^f	cSF	cSf
	CcSFSf	CcSfSf	ccS ^F S ^f	ccSfSf
cSf	3-seeded	2-seeded	3-seeded	2-seeded
	constricted pod	constricted pod	smooth pod	smooth pod

F₃ phenotypic ratio: 1 3-seeded constricted pod : 1 2-seeded constricted pod : 1 3-seeded smooth pod : 1 2-seeded smooth pod

Probability of producing 3-seeded constricted $pod = \frac{1}{4}$

Mark scheme

- 1 F₂ gametes (circled) (for 1st scenario)
- 2 F₃ genotypes matched with phenotypes (for 1st scenario)
- 3 F₃ phenotypic ratio (for 1st scenario)
- 4 F₂ gametes (circled) (for 2nd scenario)
- 5 F₃ genotypes matched with phenotypes (for 2nd scenario)
- 6 F₃ phenotypic ratio (for 2nd scenario)

[Max 5 marks for genetic crosses]

7 Overall probability = $\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{4}$

